Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    0, Vol. Issue () : 219-230    https://doi.org/10.1007/s11783-012-0469-9
RESEARCH ARTICLE
High cadmium pollution risk on vegetable amaranth and a selection for pollution-safe cultivars to lower the risk
Yihui ZHOU1, Meng XUE1, Zhongyi YANG1(), Yulian GONG1, Jiangang YUAN1(), Chunyan ZHOU2, Baifei HUANG1
1. State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; 2. Heshan Agricultural Bureau, Heshan 529700, China
 Download: PDF(267 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A pot experiment was carried out by growing 29 different genotypes (Amaranthus spp.) of vegetable amaranth under low- (0.12 mg·kg-1) and middle- (0.40 mg·kg-1) cadmium (Cd) exposure. The result showed that amaranth was vulnerable to cadmium (Cd) contamination in soil. Variations of Cd concentrations in both roots and edible parts among genotypes were significant (P<0.001) in both treatments. Cd concentrations in edible parts of the tested genotypes grown under low- and middle-Cd levels were significantly correlated (p<0.01), implying that Cd-accumulating property of amaranth is genotype-dependent. Differences in Cd chemical forms between cv. Nanxingdayemashixian (cv. Nan), a selected typical pollution-safe cultivar (Cd-PSC), and cv. Pennongjianyexian (cv. Pen), a selected typical non-Cd-PSC, under different Cd exposure conditions were compared. It was found that the alternation of Cd in FNaCl (Cd form extracted by 1 mol·L-1 NaCl) may be a key factor in regulating Cd accumulation of different amaranth genotypes and that the protein-binding Cd is considered to be associated with Cd translocation. The results indicated that amaranth is capable of enduring high level of Cd pollution when grown as vegetable crop, and accordingly, consuming vegetable amaranth would bring high health risk. Therefore, adopting Cd-PSC strategy would help reducing the risk of Cd pollution in amaranth. In this study, cv. Nan was identified as a Cd-PSC and recommended to be applied production practice.

Keywords Amaranth      Cadmium (Cd)      Cd accumulation      pollution-safe cultivar (PSC)      Cd chemical forms      health risk     
Corresponding Author(s): YANG Zhongyi,Email:adsyzy@mail.sysu.edu.cn; YUAN Jiangang,Email:yuanjg@mail.sysu.edu.cn   
Issue Date: 01 April 2013
 Cite this article:   
Yihui ZHOU,Jiangang YUAN,Chunyan ZHOU, et al. High cadmium pollution risk on vegetable amaranth and a selection for pollution-safe cultivars to lower the risk[J]. Front Envir Sci Eng, 0, (): 219-230.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0469-9
https://academic.hep.com.cn/fese/EN/Y0/V/I/219
genotypecodelow-Cdmiddle-Cd
ChanghejianyeqingChang0.086±0.000 a0.176±0.006 abcd
ChanghehuahongxianChang10.042±0.002 ghijk0.150±0.008 defgh
ChangheyuanyeqingChang20.067±0.012 bcde0.160±0.012 cdefg
Fanjidahongxian307Fan0.055±0.008 efgh0.150±0.006 defgh
GoldensunhongxianGold0.050±0.002 efghij0.129±0.004 ghij
GuangzhouyidianhongGuang0.059±0.003 defg0.187±0.017 abc
HanyuyidianhongHan0.059±0.011 defg0.171±0.011 bcde
Heshan wildHe0.052±0.003 efghi0.123±0.010 hij
JinhanhongyuanyeJin0.053±0.001 efghi0.155±0.008 defg
JinmudanyuanhuaxianJinm10.053±0.002 efghi0.154±0.007 defg
JinmudanyuanbaixianJinm20.076±0.010 abcd0.206±0.006 a
JinkedayehongJink10.083±0.013 ab0.164±0.017 bcdef
JinkebaiyuanyeJink20.052±0.003 efghi0.123±0.010 hij
JiutouniaohongyuanyeJiu0.063±0.000 cdef0.135±0.009 fghij
Liyuanhongxian (Netherlands)Li10.038±0.002 hijk0.113±0.007 ijk
Liyuanluxian (Brazil)Li20.067±0.007 bcde0.192±0.022 ab
NanxingdayemashixianNan0.037±0.004 ijk0.108±0.005 jk
NongfengyuanzhonghongNong10.058±0.006 defg0.135±0.007 fghij
NongyouxiangyouqingNong20.056±0.003 efg0.140±0.001 efghi
Pennongjianyexian (Hongkong)Pen0.080±0.003 abc0.174±0.003 bcd
Pennongtexuan330 (Thailand)Pen3300.027±0.001 k0.091±0.007 kl
Pennongtexuan331 (Thailand)Pen3310.057±0.002 efg0.140±0.003 efghi
Shenzhen wildShen0.034±0.001 jk0.073±0.003 l
Taixuanjingzhong356Tai3560.050±0.005 efghij0.137±0.008 fghij
YouqingjianyexianYou0.055±0.002 efghi0.150±0.009 defgh
YufengyouhuahongYu0.055±0.004 efghi0.166±0.020 bcdef
YuhehongxianYu10.048±0.004 fghij0.155±0.004 defg
YuheluxianYu20.043±0.007 ghijk0.107±0.006 jk
ZhengtaixiaoyuanyeZheng0.060±0.001 defg0.188±0.001 abc
Tab.1  Cd concentrations in edible part of the tested genotypes of amaranth under low-Cd and middle-Cd
Cd-PSC screenCd chemical forms study
low-Cdmiddle-Cdlow-Cdmiddle-Cd
pH5.645.605.175.13
Eh/(mV) 60628789
EC/(us·cm-1) 431453245266
Organic matter /%2.18±0.102.15±0.022.11±0.042.23±0.04
CEC/(cmol·kg-1) 6.97±0.366.80±0.996.97±0.187.11±0.51
total K/(g·kg-1) 8.56±0.209.01±0.247.13±0.258.44±0.40
available K/(mg·kg-1) 171±8177±520.1±0.124.2±0.7
total N/(g·kg-1) 1.49±0.031.48±0.0271.66±0.011.34±0.05
available N/(mg·kg-1)163±10152±271.3±2.168.1±2.9
total P/(g·kg-1)1.54±0.081.57±0.020.48±0.020.49±0.02
available P/(mg·kg-1) 138±11170±7143±3136±3
total Cd/(mg·kg-1) 0.12±0.010.40±0.020.13±0.020.61±0.05
DTPA extractable Cd/(mg·kg-1) 0.04±0.000.13±0.000.05±0.000.29±0.01
Cd DTPA / Cdtotal0.330.310.380.47
Tab.2  Properties of the tested soils (dry weight basis) for Cd-PSC screening and the study of Cd chemical forms (mean±SD, = 4)
Fig.1  of 29 amaranth genotypes. ns and * represent, that the differences of the biomass of edible between middle-Cd and low-Cd treatment were insignificance (>0.05) and significance (<0.05), respectively
Fig.2  Correlations of Cd concentrations in edible part of the tested amaranth genotypes between low- and middle-Cd
Fig.3  s and S/R ratio of Cd for the tested amaranth genotypes under low- and middle-Cd. The error bars represent SD of means ( = 3)
Fig.4  Concentrations (DW basis) of Cd in different chemical forms (a-f) in tissues of two typical amaranth genotypes under low-Cd and middle-Cd exposures. ns, * and ** mean that the differences of the data between cv. Pen and cv. Nan were insignificant, significant at <0.05 level and significant at <0.01 level, respectively; ND, not dectected; cv. Pen, a non-Cd-PSC; cv. Nan, a typical Cd-PSC
1 Yang M J, Lin X Y, Yang X E. Impact of Cd on growth and nutrient accumulation of different plant species. Chinese Journal of Applied Ecology , 1998, 9(1): 89–94 (in Chinese)CNKI:SUN:YYSB.0.1998-01-019
2 Obata H, Umebayashi M. Effects of cadmium on mineral nutrient concentrations in plants differing in tolerance for cadmium. Journal of Plant Nutrition , 1997, 20(1): 97–105
doi: 10.1080/01904169709365236
3 Yu H, Wang J L, Fang W, Yuan J G, Yang Z Y. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Science of the Total Environment , 2006, 370(2-3): 302–309
doi: 10.1016/j.scitotenv.2006.06.013 pmid:16870236
4 Zhu Y, Yu H, Wang J L, Fang W, Yuan J G, Yang Z Y. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb, and Zn). Journal of Agricultural and Food Chemistry , 2007, 55(3): 1045–1052
doi: 10.1021/jf062971p pmid:17263511
5 Wang J L, Fang W, Yang Z Y, Yuan J G, Zhu Y, Yu H. Inter- and intraspecific variations of cadmium accumulation of 13 leafy vegetable species in a greenhouse experiment. Journal of Agricultural and Food Chemistry , 2007, 55(22): 9118–9123
doi: 10.1021/jf0716432 pmid:17914880
6 Wang J, Yuan J, Yang Z, Huang B, Zhou Y, Xin J, Gong Y, Yu H. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.). Journal of Agricultural and Food Chemistry , 2009, 57(19): 8942–8949
doi: 10.1021/jf900812s pmid:19739670
7 Huang B, Xin J, Yang Z, Zhou Y, Yuan J, Gong Y. Suppression subtractive hybridization (SSH)-based method for estimating Cd-induced differences in gene expression at cultivar level and identification of genes induced by Cd in two water spinach cultivars. Journal of Agricultural and Food Chemistry , 2009, 57(19): 8950–8962
doi: 10.1021/jf900813p pmid:19739669
8 Xin J L, Huang B F, Yang Z Y, Yuan J G, Dai H W, Qiu Q. Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures. Journal of Hazardous Materials , 2010, 175(1-3): 468–476
doi: 10.1016/j.jhazmat.2009.10.029 pmid:19875230
9 Arao T, Ae N. Genotypic variations in cadmium levels of rice grain. Soil Science and Plant Nutrition , 2003, 49(4): 473–479
doi: 10.1080/00380768.2003.10410035
10 Liu J G, Li K Q, Xu J K, Liang J S, Lu X L, Yang J C, Zhu Q S. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crops Research , 2003, 83(3): 271–281
doi: 10.1016/S0378-4290(03)00077-7
11 Liu J G, Zhu Q S, Zhang Z J, Xu J K, Yang J C, Wong M H. Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. Journal of the Science of Food and Agriculture , 2005, 85(1): 147–153
doi: 10.1002/jsfa.1973
12 Wu F B, Zhang G. Genotypic differences in effect of Cd on growth and mineral concentrations in barley seedlings. Bulletin of Environmental Contamination and Toxicology , 2002, 69(2): 219–227
doi: 10.1007/s00128-002-0050-5 pmid:12107698
13 Zhang G P, Fukami M, Sekimoto H. Genotypic differences in the effects of cadmium on growth and nutrient compositions in wheat. Journal of Plant Nutrition , 2000, 23(9): 1337–1350
doi: 10.1080/01904160009382104
14 Zhang G P, Fukami M, Sekimoto H. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Research , 2002, 77(2-3): 93–98
doi: 10.1016/S0378-4290(02)00061-8
15 Grant C A, Clarke J M, Duguid S, Chaney R L. Selection and breeding of plant cultivars to minimize cadmium accumulation. Science of the Total Environment , 2008, 390(2-3): 301–310
doi: 10.1016/j.scitotenv.2007.10.038 pmid:18036635
16 Florijn P J, Van Beusichem M L. Uptake and distribution of cadmium in maize inbred lines. Plant and Soil , 1993, 150(1): 25–32
doi: 10.1007/BF00779172
17 Kurz H, Schulz R, Rǒmheld V. Selection of cultivars to reduce the concentration of cadmium and thallium in food and fodder plants. Journal of Plant Nutrition and Soil Science , 1999, 162(3): 323–328
doi: 10.1002/(SICI)1522-2624(199906)162:3&lt;323::AID-JPLN323&gt;3.0.CO;2-M
18 Bogess S F, Willavize S, Koeppe D E. Differential response of soybean cultivars to soil cadmium. Agronomy Journal , 1978, 70(5): 756–760
doi: 10.2134/agronj1978.00021962007000050015x
19 Arao T, Ae N, Sugiyama M, Takahashi M. Genotypic differences in cadmium uptake and distribution in soybeans. Plant and Soil , 2003, 251(2): 247–253
doi: 10.1023/A:1023079819086
20 McLaughlin M J, Williams G M J, Mckay A, Kirkham R, Gunton J, Jackson K J, Thompson R, Dowling B, Partington D, Smart M K, Tiller K G. Effect of cultivar on uptake of 1admium by potato tubers. Australian Journal of Agricultural Research , 1994, 45(7): 1483–1495
doi: 10.1071/AR9941483
21 Gárate A, Ramos I, Manzanares M, Lucena J J. Cadmium uptake and distribution in three cultivars of Lactuca sp. Bulletin of Environmental Contamination and Toxicology , 1993, 50(5): 709–716
doi: 10.1007/BF00194666 pmid:8490277
22 Liu W T, Zhou Q X, An J, Sun Y B, Liu R. Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. Journal of Hazardous Materials , 2010, 173(1-3): 737–743
doi: 10.1016/j.jhazmat.2009.08.147 pmid:19775811
23 Liu H Y, Probst A, Liao B H. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Science of the Total Environment , 2005, 339(1-3): 153–166
doi: 10.1016/j.scitotenv.2004.07.030 pmid:15740766
24 Shukla S, Bhargava A, Chatterjee A, Srivastava J, Singh N, Singh S P. Mineral profile and variability in vegetable amaranth (Amaranthus tricolor). Plant Foods for Human Nutrition (Dordrecht, Netherlands) , 2006, 61(1): 23–28
doi: 10.1007/s11130-006-0004-x pmid:16736385
25 Wang J L. Inter- and Intra-specific differences of leafy vegetable in Cd tolerances and its mechanisms. Dissertation for the Doctoral Degree . Guangzhou: Sun Yat-sen University, 2006. (in Chinese)
26 Chen F, Fang W, Yang Z, Yuan J. Cadmium and copper uptake and accumulation by Sesbania rostrata seedling, a N-fixing annual plant: implications for the mechanism of heavy metal tolerance. Frontiers of Biology in China , 2009, 4(2): 200–206
doi: 10.1007/s11515-009-0008-7
27 Nelson D W, Sommers L E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Part 3-Chemical Methods . In: Sparks DL, ed. SSSA Book Series 5. Soil Science Society of America, Inc., American Society of Agronomy, Inc. ,Wisconsin: Madison, 2001, 961–1010
28 Lu R. Soil and Agro-Chemical Analysis Methods . Beijing: Agricultural Science and Technology Press, 2000, 255–266 (in Chinese)
29 Amacher M C. Nickel, cadmium, and lead. In Methods of Soil Analysis: Part 3. Chemical Methods . In: Sparks DL, editor. SSSA Book Series 5. Soil Science Society of America, Inc., American Society of Agronomy, Inc. , Wisconsin: Madison, 2001, 739–768
30 Bremner J M, Mulvaney C S. Total nitrogen. In: Page A.L., ed. Methods of Soil Analysis, Part 2. Agronomy Monograph , 2nd edWisconsin : Madison, 1982, 595–624
31 Bray R H, Kurtz L T. Determination of total, organic and available forms of phosphorus in soil. Soil Science , 1945, 59(1): 39–45
doi: 10.1097/00010694-194501000-00006
32 Yang J R, He J Q, Zhang G X, Mao X Q. Tolerance mechanism of crops to Cd pollution. Chinese Journal of Applied Ecology , 1995, 6: 87–91 (in Chinese)CNKI:SUN:YYSB.0.1995-01-018
33 Wu F B, Dong J, Qian Q Q, Zhang G P. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere , 2005, 60(10): 1437–1446
doi: 10.1016/j.chemosphere.2005.01.071 pmid:16054913
34 Wang X, Liu Y, Zeng G, Chai L, Song X, Min Z, Xiao X. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L) . Gaud. Environmental and Experimental Botany , 2008, 62(3): 389–395
doi: 10.1016/j.envexpbot.2007.10.014
35 Grispen V M, Nelissen H J, Verkleij J A. Phytoextraction with Brassica napus L. : a tool for sustainable management of heavy metal contaminated soils. Environmental Pollution , 2006, 144(1): 77–83
doi: 10.1016/j.envpol.2006.01.007 pmid:16515826
36 Cui Y J, Zhu Y G, Zhai R H, Chen D Y, Huang Y Z, Qiu Y, Liang J Z. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environment International , 2004, 30(6): 785–791
doi: 10.1016/j.envint.2004.01.003 pmid:15120196
37 Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry. Biorecovery , 1989, 1:81–126
38 JECFA. 2003. Safety evaluation of certain food additives and contaminants. WHO food Additives Series, Geneva , Summary available at: www.who.int/ipcs/food/ jecfa/summaries/en/summary_61.pdf
39 Jinadasa N, Milham P, Hawkins C, Cornish P, Williams P, Kaldor C, Conroy J. Cadmium Levels in Soils and Vegetables of the Greater Sydney Region, Australia, 1999
40 Xu S. Target analysis of food structure during the All-round Better-off Period in China. Food and Nutrition in China , 2009, 1: 10–14 (in Chinese)
41 Zhu F, Fang W, Yang Z Y. Variations of Cd absorption and accumulation of 36 Lycopersicon esculentum varieties. Acta Ecologica Sinica , 2006, 26(12): 196–206 (in Chinese)
42 Belimov A A, Safronova V I, Tsyganov V E, Borisov A Y, Kozhemyakov A P, Stepanok V V, Martenson A M, Gianinazzi-Pearson V, Tikhonovich I A. Genetic variability in tolerance to cadmium and accumulation of heavy metal in pea (Pisum sativumL.). Euphytica , 2003, 131(1): 25–35
doi: 10.1023/A:1023048408148
43 Thomas G M, Harrison H C. Genetic line effects on parameters influencing cadmium concentration in lettuce (Lactuca sativa L.). Journal of Plant Nutrition , 1991, 14(9): 953–962
doi: 10.1080/01904169109364255
44 Sanità di Toppi L, Gabrielli R. Response to cadmium in higher plants. Environmental and Experimental Botany , 1999, 41(2): 105–130
doi: 10.1016/S0098-8472(98)00058-6
45 Weigel H J, J?ger H J. Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiology , 1980, 65(3): 480–482
doi: 10.1104/pp.65.3.480 pmid:16661218
46 Kilchevsky A, Kogotko L, Shchur A, Kruk A. Genetic aspects of pollutant accumulation in plants. In: Mothersill M, Mosse I, Seymour C, eds. NATO Security through Science Series-Multiple Stressors: A Challenge for the Future . Netherlands: Springer, 2007: 225–234
47 Clarke J M. Inheritance of grain cadmium concentration in four durum wheat crosses. Agronomy Abstracts, American Society of Agronomy . Wisconsin: Madison, 1995, 76
48 Penner G A, Bezte L J, Leisle D, Clarke J. Identification of RAPD markers linked to a gene governing cadmium uptake in durum wheat. Genome , 1995, 38(3): 543–547
pmid:18470188
49 Li J C, Guo J B, Xu W Z, Ma M. RNA interference-mediated silencing of phytochelatin synthase gene reduce cadmium accumulation in rice seeds. Journal of Integrative Plant Biology , 2007, 49(7): 1032–1037
doi: 10.1111/j.1672-9072.2007.00473.x
50 Cooperative Research Centre for Soil &amp; Land Management (CRS), Commonwealth Scientific and Industrial Research Organisation (CSIRO) Division of Soils. Managing Cadmium in Potatoes for Quality Produce . 2 ed. 1999. Available at: http://www.cadmium-management.org.au/documents/Managing_Cd_in_potatoes_brochure.pdf
51 NCMS. Managing cadmium in summer grain legumes for premium quality produce. 2001. Available at: http://www.cadmium-management.org.au/documents/grain_ legumes_brochure.pdf
52 Whiting S N, Leake J R, McGrath S P, Baker A J M. Hyperaccumulation of Zn by Thlaspi caerulescens can ameliorate Zn toxicity in the rhizosphere of cocropped Thlaspi arvense. Environmental Science &amp; Technology , 2001, 35(15): 3237–3241
doi: 10.1021/es010644m pmid:11506012
53 Sinha S, Mukherjee S K. Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Current Microbiology , 2008, 56(1): 55–60
doi: 10.1007/s00284-007-9038-z pmid:1789926
[1] Yating Wei, Dong Hu, Chengsong Ye, Heng Zhang, Haoran Li, Xin Yu. Drinking water quality & health risk assessment of secondary water supply systems in residential neighborhoods[J]. Front. Environ. Sci. Eng., 2024, 18(2): 18-.
[2] Jinglu Song, Yi Lu, Thomas Fischer, Kejia Hu. Effects of the urban landscape on heatwave-mortality associations in Hong Kong: comparison of different heatwave definitions[J]. Front. Environ. Sci. Eng., 2024, 18(1): 11-.
[3] Lihua Pang, Qianhui Lin, Shasha Zhao, Hao Zheng, Chenguang Li, Jing Zhang, Cuizhu Sun, Lingyun Chen, Fengmin Li. Data quality assessment for studies investigating microplastics and nanoplastics in food products: Are current data reliable?[J]. Front. Environ. Sci. Eng., 2023, 17(8): 94-.
[4] Xu Zhao, Wei Li, Wei Wang, Jingjing Liu, Yunjiang Yu, Yang Li, Xichao Chen, Yun Liu. Legacies and health risks of heavy metals, polybrominated diphenyl ethers, and polychlorinated dibenzo-dioxins/furans at e-waste recycling sites in South China[J]. Front. Environ. Sci. Eng., 2023, 17(7): 79-.
[5] Junmei Guo, Yuexing Wei, Junxing Yang, Tongbin Chen, Guodi Zheng, Tianwei Qian, Xiaona Liu, Xiaofei Meng, Mengke He. Cultivars and oil extraction techniques affect Cd/Pb contents and health risks in oil of rapeseed grown on Cd/Pb-contaminated farmland[J]. Front. Environ. Sci. Eng., 2023, 17(7): 87-.
[6] Shijin Wu, Zijing Xiang, Daohui Lin, Lizhong Zhu. Multimedia distribution and health risk assessment of typical organic pollutants in a retired industrial park[J]. Front. Environ. Sci. Eng., 2023, 17(11): 142-.
[7] Liang Cui, Ji Li, Xiangyun Gao, Biao Tian, Jiawen Zhang, Xiaonan Wang, Zhengtao Liu. Human health ambient water quality criteria for 13 heavy metals and health risk assessment in Taihu Lake[J]. Front. Environ. Sci. Eng., 2022, 16(4): 41-.
[8] Yanfeng Yang, Ruina Zhang, Ziyang Lou. Bioaerosol emissions variations in large-scale landfill region and their health risk impacts[J]. Front. Environ. Sci. Eng., 2022, 16(12): 158-.
[9] Lei Zheng, Xingbao Gao, Wei Wang, Zifu Li, Lingling Zhang, Shikun Cheng. Utilization of MSWI fly ash as partial cement or sand substitute with focus on cementing efficiency and health risk assessment[J]. Front. Environ. Sci. Eng., 2020, 14(1): 5-.
[10] Xinshu Jiang, Yingxi Qu, Liquan Liu, Yuan He, Wenchao Li, Jun Huang, Hongwei Yang, Gang Yu. PPCPs in a drinking water treatment plant in the Yangtze River Delta of China: Occurrence, removal and risk assessment[J]. Front. Environ. Sci. Eng., 2019, 13(2): 27-.
[11] Jianguo LIU,Wen ZHANG,Peng QU,Mingxin WANG. Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed wetlands[J]. Front. Environ. Sci. Eng., 2016, 10(2): 262-269.
[12] Bingbing XU, Qiujin XU, Cunzhen LIANG, Li LI, Lijia JIANG. Occurrence and health risk assessment of trace heavy metals via groundwater in Shizhuyuan Polymetallic Mine in Chenzhou City, China[J]. Front. Environ. Sci. Eng., 2015, 9(3): 482-493.
[13] Meng XUE, Yihui ZHOU, Zhongyi YANG, Biyun LIN, Jiangang YUAN, Shanshan WU. Comparisons in subcellular and biochemical behaviors of cadmium between low-Cd and high-Cd accumulation cultivars of pakchoi (Brassica chinensis L.)[J]. Front Envir Sci Eng, 2014, 8(2): 226-238.
[14] Kun ZHANG, Jianbing WANG, Zhongyi YANG, Guorong XIN, Jiangang YUAN, Junliang XIN, Charlie HUANG. Genotype variations in accumulation of cadmium and lead in celery (Apium graveolens L.) and screening for low Cd and Pb accumulative cultivars[J]. Front Envir Sci Eng, 2013, 7(1): 85-96.
[15] Lei ZHANG, Jing AN, Qixing ZHOU. Single and joint effects of HHCB and cadmium on zebrafish (Danio rerio) in feculent water containing bedloads[J]. Front Envir Sci Eng, 2012, 6(3): 360-372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed