Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (2) : 166-172    https://doi.org/10.1007/s11783-012-0471-2
RESEARCH ARTICLE
Occurrence and removal of selected polycyclic musks in two sewage treatment plants in Xi’an, China
Yongxiang REN1(), Kai WEI1, Hua LIU1, Guoqiang SUI1, Junping WANG1, Yanjun SUN2, Xiaohui ZHENG1
1. Key Laboratory of Northwestern Water Resource and Environment Ecology (Ministry of Education), Xi’an University of Architecture and Technology, Xi’an 710055, China; 2. Kaidi Northwest Rubber Co. Ltd., Xianyang 712023, China
 Download: PDF(207 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Polycyclic musks are widely used for cosmetics and other personal care and household cleaning products. The occurrence and removal of two representative polycyclic musks, galaxolide (HHCB) and tonalide (AHTN) were investigated in three different processes of two sewage treatment plants (STPs) in Xi’an, China. The samples were preconcentrated by solid phase extraction procedure and analyzed using a gas chromatography mass spectrometry (GC/MS) by a modified procedure. The HHCB was in the range of 82.8 to 182.5 ng·L-1 in the influents and 22.6 to 103.9 ng·L-1 in the effluents. The AHTN ranged from 11.0 to 19.3 ng·L-1 in the influents and 2.2 to 8.8 ng·L-1 in the effluents. The removal efficiency of the two musks varied in the ranges of 43.1%–70.4% for HHCB and 54.2%–84.4% for AHTN. Concentrations of the two musks in aqueous phase of three processes slightly increased along the primary process, and significantly removed during the biologic treatment processes, revealing that the selected musks could be remarkably removed in varied activated sludge processes. Advanced processes of activated sludge did not show a significant superiority on selected musk removal compared to the conventional process. The selected musk removal mainly resulted from the adsorption function of activated sludge. There was no significant change of HHCB/AHTN ratios along the treatment flow, indicating that each sewage treatment structure had a similar removal efficiency for the two musks.

Keywords polycyclic musk      sewage      tonalide (AHTN)      galaxolide (HHCB)      removal efficiency      adsorption     
Corresponding Author(s): REN Yongxiang,Email:ryx@xauat.edu.cn   
Issue Date: 01 April 2013
 Cite this article:   
Yongxiang REN,Guoqiang SUI,Junping WANG, et al. Occurrence and removal of selected polycyclic musks in two sewage treatment plants in Xi’an, China[J]. Front Envir Sci Eng, 2013, 7(2): 166-172.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0471-2
https://academic.hep.com.cn/fese/EN/Y2013/V7/I2/166
Fig.1  Characteristics of AHTN (a) and HHCB (b) [,,]
Fig.2  Schematic diagram of investigated STPs
STPsHRT/hMLSS/ (mg·L-1)SRT/dRSR/%OLR/(kg BOD·kg-1 MLSS·d-1)
AGCPriBRSec
A0.122.010.922.5310014.02000.11
B-a0.11.7-2.512.835.8330015.380-1000.09
B-b0.11.7-2.55.754.741006.5800.20
Tab.1  Operation parameters of investigated STPs in Xi’an
musksmolecular weightretention time/minm/z for qualification
HHCB258.425.21213
AHTN258.425.70187
Tab.2  Retention time and selected ions of polycyclic musks analyzed by GC/MS
musksLODs/(μg·L-1)LOQs/(μg·L-1)recovery/%RSD/%
HHCB1.03.383.02±5.294.37
AHTN1.03.379.32±2.791.76
Tab.3  LOQs and recovery of the polycyclic musks
Fig.3  Distribution of COD, , HHCB and AHTN along the flows of STP A and STP B. (a) STP A: COD and ; (b) STP A: HHCB and AHTN; (c) STP B-a: COD and ; (d) STP B-a: HHCB and AHTN; (e) STP B-b: COD and ; (f) STP B-b: HHCB and AHTN. Raw: raw sewage; AGC: aerated grit chamber; Pri: primary sedimentation tank; Ano: anoxic tank; Ana: anaerobic tank; Oxi: oxic tank; Sec: Secondary sedimentation tank
musksSTP ASTP B-aSTP B-b
HHCB70.443.164.6
AHTN84.454.273.4
Tab.4  Removal efficiencies of HHCB and AHTN in two STPs in Xi’an/%
1 Reiner J L, Berset J D, Kannan K. Mass flow of polycyclic musks in two wastewater treatment plants. Archives of Environmental Contamination and Toxicology , 2007, 52(4): 451–457
doi: 10.1007/s00244-006-0203-3 pmid:17354035
2 Kallenborn R, Gatermann R, Planting S, Rimkus G G, Lund M, Schlabach M, Burkow I C. Gas chromatographic determination of synthetic musk compounds in Norwegian air samples. Journal of Chromatography A , 1999, 846(1-2): 295–306
doi: 10.1016/S0021-9673(99)00259-9
3 Stevens J L, Northcott G L, Stern G A, Tomy G T, Jones K C. PAHs, PCBs, PCNs, organochlorine pesticides, synthetic musks, and polychlorinated n-alkanes in U.K. sewage sludge: survey results and implications. Environmental Science & Technology , 2003, 37(3): 462–467
doi: 10.1021/es020161y pmid:12630459
4 Peck A M, Hornbuckle K C. Synthetic musk fragrances in Lake Michigan. Environmental Science & Technology , 2004, 38(2): 367–372
doi: 10.1021/es034769y pmid:14750709
5 Duedahl-Olesen L, Cederberg T, Pedersen K H, H?jg?rd A. Synthetic musk fragrances in trout from Danish fish farms and human milk. Chemosphere , 2005, 61(3): 422–431
doi: 10.1016/j.chemosphere.2005.02.004 pmid:16182860
6 Rimkus G G, Wolf M. Polycyclic musk fragrances in human adipose tissue and human milk. Chemosphere , 1996, 33(10): 2033–2043
doi: 10.1016/0045-6535(96)00321-9 pmid:8930104
7 Kannan K, Reiner J L, Yun S H, Perrotta E E, Tao L, Johnson-Restrepo B, Rodan B D. Polycyclic musk compounds in higher trophic level aquatic organisms and humans from the United States. Chemosphere , 2005, 61(5): 693–700
doi: 10.1016/j.chemosphere.2005.03.041 pmid:16219504
8 Raab U, Preiss U, Albrecht M, Shahin N, Parlar H, Fromme H. Concentrations of polybrominated diphenyl ethers, organochlorine compounds and nitro musks in mother’s milk from Germany (Bavaria). Chemosphere , 2008, 72(1): 87–94
doi: 10.1016/j.chemosphere.2008.01.053 pmid:18328530
9 Balk F, Ford R A. Environmental risk assessment for the polycyclic musks AHTN and HHCB in the EU: I. Fate and exposure assessment. Toxicology Letters , 1999, 111(1-2): 57–79
doi: 10.1016/S0378-4274(99)00169-1 pmid:10630703
10 Eschke H D, Dibowski H J, Traud J. Determination of polycyclic musk flavors in human fat and milk by using selective ion trap GC/MS/MS. Deutsche Lebensmittel-Rundschau , 1995, 91(12): 375–379
11 Heberer T. Occurrence, fate, and assessment of polycyclic musk residues in the aquatic environment of Urban areas-a review. Acta Hydrochimica et Hydrobiologica , 2002, 30(5-6): 227–243
doi: 10.1002/aheh.200390005
12 Esehke H D. Synthetic Musks in Different Water Matrices. The Handbook of Environmental Chemistry , 2004, 3X, Berlin: Springer
13 Ricking M, Schwarzbauer J, Hellou J, Svenson A, Zitko V. Polycyclic aromatic musk compounds in sewage treatment plant effluents of Canada and Sweden—first results. Marine Pollution Bulletin , 2003, 46(4): 410–417
doi: 10.1016/S0025-326X(02)00480-0 pmid:12705913
14 Minstry of Environmental Protection of the People’s Republic of China. Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002) . Beijing: China Environmental Science Press, 2002 (in Chinese)
15 Zeng X Y, Sheng G Y, Gui H Y, Chen D H, Shao W L, Fu J M. Preliminary study on the occurrence and distribution of polycyclic musks in a wastewater treatment plant in Guandong, China. Chemosphere , 2007, 69(8): 1305–1311
doi: 10.1016/j.chemosphere.2007.05.029 pmid:17604814
16 Zhou H D, Huang X, Gao M J, Wang X L, Wen X H. Distribution and elimination of polycyclic musks in three sewage treatment plants of Beijing, China. Journal of Environmental Sciences-China , 2009, 21(5): 561–567
doi: 10.1016/S1001-0742(08)62308-6 pmid:20108655
17 Lv Y, Yuan T, Hu J Y, Wang W H. Seasonal occurrence and behavior of synthetic musks (SMs) during wastewater treatment process in Shanghai, China. Science of the Total Environment , 2010, 408(19): 4170–4176
doi: 10.1016/j.scitotenv.2010.05.003 pmid:20633733
18 Dsikowitzky L, Schwarzbauer J, Littke R. Distribution of polycyclic musks in water and particulate matter of the Lippe River (Germany). Organic Geochemistry , 2002, 33(12): 1747–1758
doi: 10.1016/S0146-6380(02)00115-8
19 Yang J J, Metcalfe C D. Fate of synthetic musks in a domestic wastewater treatment plant and in an agricultural field amended with biosolids. Science of the Total Environment , 2006, 363(1-3): 149–165
doi: 10.1016/j.scitotenv.2005.06.022 pmid:16081141
20 Simonich S L, Begley W M, Deabere G, Eckhoff W S. The analysis of fragrance materials in wastewater and treated wastewater. Environ Sci Technol , 2000, 34(6): 959-965
21 Bester K. Retention characteristics and balance assessment for two polycyclic musk fragrances (HHCB and AHTN) in a typical German sewage treatment plant. Chemosphere , 2004, 57(8): 863–870
doi: 10.1016/j.chemosphere.2004.08.032 pmid:15488577
22 Artola-Garicano E, Hermens J L M, Vaes W H J. Evaluation of Simple Treat 3.0 for two hydrophobic and slowly biodegradable chemicals: polycyclic musks HHCB and AHTN. Water Research , 2003, 37(18): 4377–4384
doi: 10.1016/S0043-1354(03)00434-2 pmid:14511708
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Mengqing Ge, Tao Lin, Kemei Zhou, Hong Chen, Hang Xu, Hui Tao, Wei Chen. Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking water treatment process at Taihu Lake[J]. Front. Environ. Sci. Eng., 2021, 15(5): 93-.
[4] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[5] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[6] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[7] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[8] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[9] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[10] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[11] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[12] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[13] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[14] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[15] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed