Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (6) : 844-850    https://doi.org/10.1007/s11783-013-0487-2
RESEARCH ARTICLE
Degradation of bisphenol A by microorganisms immobilized on polyvinyl alcohol microspheres
Xue BAI1,2, Hanchang SHI1(), Zhengfang YE3, Qiujin SUN1, Qing WANG1, Zhongyou WANG3
1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; 2. Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake (Ministry of Education), College of Environmental Science and Engineering, Hohai University, Nanjing 210098, China; 3. The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Department of Environmental Engineering, Peking University, Beijing 100871, China
 Download: PDF(225 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, microorganisms (named B111) were immobilized on polyvinyl alcohol microspheres prepared by the inverse suspension crosslinked method. The biodegradation of bisphenol A (BPA) and 4-hydroxybenzaldehyde, a degradation product of BPA, by free and immobilized B111 was investigated. The BPA degradation studies were carried out at initial BPA concentrations ranging from 25 to 150 mg·L-1. The affinity constant Ks and maximum degradation rate Rmax were 98.3 mg·L-1 and 19.7 mg·mg-1VSS·d-1 for free B111, as well as 87.2 mg·L-1 and 21.1 mg·mg-1VSS·d-1 for immobilized B111, respectively. 16S rDNA gene sequence analyses confirmed that the dominant genera were Pseudomonas and Brevundimonas for BPA biodegradation in microorganisms B111.

Keywords bisphenol A      polyvinyl alcohol      immobilized microorganisms      4-hydroxybenzaldehyde     
Corresponding Author(s): SHI Hanchang,Email:hanchang@mail.tsinghua.edu.cn   
Issue Date: 01 December 2013
 Cite this article:   
Xue BAI,Hanchang SHI,Zhengfang YE, et al. Degradation of bisphenol A by microorganisms immobilized on polyvinyl alcohol microspheres[J]. Front Envir Sci Eng, 2013, 7(6): 844-850.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0487-2
https://academic.hep.com.cn/fese/EN/Y2013/V7/I6/844
Fig.1  Schematic of the immobilization of microorganisms on PVA microspheres
Fig.2  Chromatograms of BPA metabolites degraded by free (a) and immobilized (b) B111
Fig.3  Average rates of BPA (a) and PHBA (b) degradation by free and immobilized B111
chemicalsmicroorganismsKs/(mg·L-1)RmaxRmax/KsR2
specific to volume/(mg·L-1·d-1)specific to microorganisms/(mg·mg-1 VSS·d-1)
BPAfree B11198.310.719.70.110.9942
immobilized B11187.211.521.10.130.9893
PHBAfree B111103.812.322.50.120.9951
immobilized B11196.515.929.20.160.9916
Tab.1  Kinetic parameters for the free and immobilized B111 degradation of BPA and PHBA
Fig.4  DGGE profiles of amplified 16S rDNA fragments from free (a) and immobilized (b) B111
Fig.5  Phylogenetic trees for the partial bacterial 16S rDNA sequences
1 Diamanti-Kandarakis E, Bourguignon J P, Giudice L C, Hauser R, Prins G S, Soto A M, Zoeller R T, Gore A C. Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocrine Reviews , 2009, 30(4): 293-342
doi: 10.1210/er.2009-0002 pmid:19502515
2 Fleisch A F, Sheffield P E, Chinn C, Edelstein B L, Landrigan P J. Bisphenol A and related compounds in dental materials. Pediatrics , 2010, 126(4): 760-768
doi: 10.1542/peds.2009-2693 pmid:20819896
3 Muncke J. Exposure to endocrine disrupting compounds via the food chain: is packaging a relevant source? The Science of the Total Environment , 2009, 407(16): 4549-4559
doi: 10.1016/j.scitotenv.2009.05.006 pmid:19482336
4 Sultania M, Rai J S P, Srivastava D. Process modeling, optimization and analysis of esterification reaction of cashew nut shell liquid (CNSL)-derived epoxy resin using response surface methodology. Journal of Hazardous Materials , 2011, 185(2-3): 1198-1204
doi: 10.1016/j.jhazmat.2010.10.031 pmid:21051142
5 Gassara F, Brar S K, Tyagi R D, Valero J R. Dégradation biologique du bisphénol A dans les eaux usées. Environmental Reviews , 2011, 19: 32-54
doi: 10.1139/a10-024
6 Mohapatra D P, Brar S K, Tyagi R D, Surampalli R Y. Degradation of endocrine disrupting bisphenol A during pre-treatment and biotransformation of wastewater sludge. Chemical Engineering Journal , 2010, 163(3): 273-283
doi: 10.1016/j.cej.2010.07.062
7 Asakura H, Matsuto T. Experimental study of behavior of endocrine-disrupting chemicals in leachate treatment process and evaluation of removal efficiency. Waste Management (New York, N.Y.) , 2009, 29(6): 1852-1859
doi: 10.1016/j.wasman.2008.11.030 pmid:19157831
8 Melcer H, Klecka G. Treatment of wastewaters containing bisphenol A: state of the science review. Water Environ Res , 2011, 83(7): 650-666
doi: 10.2175/106143010X12851009156925 pmid:21790084
9 Mohapatra D P, Brar S K, Tyagi R D, Surampalli R Y. Parameter optimization of ferro-sonication pre-treatment process for degradation of bisphenol A and biodegradation from wastewater sludge using response surface model. Journal of Hazardous Materials , 2011, 189(1-2): 100-107
doi: 10.1016/j.jhazmat.2011.02.004 pmid:21354701
10 Nicolucci C, Rossi S, Menale C, Godjevargova T, Ivanov Y, Bianco M, Mita L, Bencivenga U, Mita D G, Diano N. Biodegradation of bisphenols with immobilized laccase or tyrosinase on polyacrylonitrile beads. Biodegradation , 2011, 22(3): 673-683
doi: 10.1007/s10532-010-9440-2 pmid:21125313
11 Zhao X, Wang Y M, Ye Z F, Borthwick A G L, Ni J R. Oil field wastewater treatment in biological aerated filter by immobilized microorganisms. Process Biochemistry , 2006, 41(7): 1475-1483
doi: 10.1016/j.procbio.2006.02.006
12 Bai X, Ye Z F, Qu Y Z, Li Y F, Wang Z Y. Immobilization of nanoscale Fe0 in and on PVA microspheres for nitrobenzene reduction. Journal of Hazardous Materials , 2009, 172(2-3): 1357-1364
doi: 10.1016/j.jhazmat.2009.08.004 pmid:19729239
13 Wang Z Y, Ye Z F, Zhang M H, Bai X. Degradation of 2,4,6-trinitrotoluene (TNT) by immobilized microorganism-biological filter. Process Biochemistry , 2010, 45(6): 993-1001
doi: 10.1016/j.procbio.2010.03.006
14 Geens T, Goeyens L, Covaci A. Are potential sources for human exposure to bisphenol-A overlooked? International Journal of Hygiene and Environmental Health , 2011, 214(5): 339-347
doi: 10.1016/j.ijheh.2011.04.005 pmid:21570349
15 Silva C D, Gómez J, Beristain-Cardoso R. Simultaneous removal of 2-chlorophenol, phenol, p-cresol and p-hydroxybenzaldehyde under nitrifying conditions: kinetic study. Bioresource Technology , 2011, 102(11): 6464-6468
doi: 10.1016/j.biortech.2011.03.105 pmid:21504846
16 Zhang L S, Wu W Z, Wang J L. Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel. Journal of Environmental Sciences-China , 2007, 19(11): 1293-1297
doi: 10.1016/S1001-0742(07)60211-3 pmid:18232221
17 Chen K C, Lee S C, Chin S C, Houng J Y. Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms. Enzyme and Microbial Technology , 1998, 23(5): 311-320
doi: 10.1016/S0141-0229(98)00054-4
18 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry , 1976, 72(1-2): 248-254
doi: 10.1016/0003-2697(76)90527-3 pmid:942051
19 Maya K, Singh R S, Upadhyay S N, Dubey S K. Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite TCP. Process Biochemistry , 2011, 46(11): 2130-2136
doi: 10.1016/j.procbio.2011.08.012
20 Lobos J H, Leib T K, Su T M. Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium. Applied and Environmental Microbiology , 1992, 58(6): 1823-1831
pmid:1622258
21 Button D K. Biochemical basis for whole-cell uptake kinetics: specific affinity, oligotrophic capacity, and the meaning of the michaelis constant. Applied and Environmental Microbiology , 1991, 57(7): 2033-2038
pmid:16348524
22 Healey F P. Slope of the Monod equation as an indicator of advantage in nutrient competition. Microbial Ecology , 1980, 5(4): 281-286
doi: 10.1007/BF02020335
23 Kang J H, Kondo F. Bisphenol a degradation by bacteria isolated from river water. Archives of Environmental Contamination and Toxicology , 2002, 43(3): 265-269
doi: 10.1007/s00244-002-1209-0 pmid:12202920
24 Matsumura Y, Hosokawa C, Sasaki-Mori M, Akahira A, Fukunaga K, Ikeuchi T, Oshiman K I, Tsuchido T. Isolation and characterization of novel bisphenol:A—degrading bacteria from soils. Biocontrol Science , 2009, 14(4): 161-169
doi: 10.4265/bio.14.161 pmid:20055221
25 Yuan R F, Zhou B H, Shi C H, Yu L Y, Zhang C L, Gu J N. Biodegradation of 2-methylisoborneol by bacteria enriched from biological activated carbon. Frontiers of Environmental Science & Engineering , 2012, 6(5): 701-710
26 Yang Y Y, Pereyra L P, Young R B, Reardon K F, Borch T. Testosterone-mineralizing culture enriched from swine manure: characterization of degradation pathways and microbial community composition. Environmental Science & Technology , 2011, 45(16): 6879-6886
pmid:21740029
27 Carvalho G, Marques R, Lopes A R, Faria C, Noronha J P, Oehmen A, Nunes O C, Reis M A M. Biological treatment of propanil and 3,4-dichloroaniline: kinetic and microbiological characterisation. Water Research , 2010, 44(17): 4980-4991
doi: 10.1016/j.watres.2010.08.006 pmid:20801480
[1] Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu. Removal of tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilm batch reactor-constructed wetland system[J]. Front. Environ. Sci. Eng., 2019, 13(1): 14-.
[2] Yong YU,Laosheng WU. Determination and occurrence of endocrine disrupting compounds, pharmaceuticals and personal care products in fish (Morone saxatilis)[J]. Front. Environ. Sci. Eng., 2015, 9(3): 475-481.
[3] Liping LIANG,Jing ZHANG,Pian FENG,Cong LI,Yuying HUANG,Bingzhi DONG,Lina LI,Xiaohong GUAN. Occurrence of bisphenol A in surface and drinking waters and its physicochemical removal technologies[J]. Front. Environ. Sci. Eng., 2015, 9(1): 16-38.
[4] Yanping HOU, Kaiming LI, Haiping LUO, Guangli LIU, Renduo ZHANG, Bangyu QIN, Shanshan CHEN. Using crosslinked polyvinyl alcohol polymer membrane as a separator in the microbial fuel cell[J]. Front Envir Sci Eng, 2014, 8(1): 137-143.
[5] Liqin JI, Xue BAI, Lincheng ZHOU, Hanchang SHI, Wei CHEN, Zulin HUA. One-pot preparation of graphene oxide magnetic nanocomposites for the removal of tetrabromobisphenol A[J]. Front Envir Sci Eng, 2013, 7(3): 442-450.
[6] Hongtao ZHU, Wenna LI. Bisphenol A removal from synthetic municipal wastewater by a bioreactor coupled with either a forward osmotic membrane or a microfiltration membrane unit[J]. Front Envir Sci Eng, 2013, 7(2): 294-300.
[7] ZHAN Manjun, YANG Xi, KONG Lingren, YANG Hongshen. Effect of natural aquatic humic substances on the photodegradation of bisphenol A[J]. Front.Environ.Sci.Eng., 2007, 1(3): 311-315.
[8] XU Bin, GAO Naiyun, RUI Min, WANG Hong, WU Haihui. Degradation of endocrine disruptor bisphenol A in drinking water by ozone oxidation[J]. Front.Environ.Sci.Eng., 2007, 1(3): 350-356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed