Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (3) : 356-364    https://doi.org/10.1007/s11783-013-0488-1
RESEARCH ARTICLE
Experimental determination of Cd2+ adsorption mechanism on low-cost biological waste
Farhah Amalya ISMAIL, Ahmad Zaharin ARIS()
Environmental Forensics Research Centre, Faculty of Environmental Studies, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
 Download: PDF(269 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Carbonate shells have an astonishing ability in the removal of Cd2+ in a short time period with emphasis on being a low cost adsorbent. In the present study, the sorption capacity of carbonate shells was studied for Cd2+ in batch experiments. The influence of different carbonate shell sizes and physico-chemical factors were evaluated and the results were analyzed for its correlation matrices by using Predictive Analytics Software (PASW). The mineralogy state of aqueous solution regarding the saturation index was simulated using PHREEQC to identify the Cd2+ uptake mechanism. The Cd uptake rates were calculated as well as Ca2+, HCO3- concentration, pH, ambient humidity and temperature were measured. Cd2+ removal of 91.52% was achieved after 5 h adsorption. The adsorption efficiencies were significantly influenced by pH as they increased with the increase of pH from acidic solution (5.50±0.02) to slightly alkaline (7.60±0.05). In addition, the mineralogy state of aqueous solution calculated from PHREEQC confirmed that the increment of Ca2+ and HCO3- concentrations in solution was attributed to the dissolution of carbonate shells. Moreover, the ion exchange adsorption mechanism of Cd2+ toward Ca2+ was identified as the process involved in Cd2+ uptake.

Keywords carbonate shell      cadmium      heavy metal      adsorption mechanism      saturation state     
Corresponding Author(s): ARIS Ahmad Zaharin,Email:zaharin@env.upm.edu.my   
Issue Date: 01 June 2013
 Cite this article:   
Farhah Amalya ISMAIL,Ahmad Zaharin ARIS. Experimental determination of Cd2+ adsorption mechanism on low-cost biological waste[J]. Front Envir Sci Eng, 2013, 7(3): 356-364.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0488-1
https://academic.hep.com.cn/fese/EN/Y2013/V7/I3/356
Fig.1  (a) Cd concentration during treatment up to 72 h using different size range of biosorbent; (b) the closed up curves for the first 6 h
Cd2+/(μg·L-1)fraction shell size/mmCd2+/(μg·L-1)Cd2+ removal/%pH
50006.7064.0798.737.57
50004.0040.1699.217.63
50002.0031.8599.377.66
50000.8026.0899.487.69
50000.4025.1299.507.72
Tab.1  Effect of different fraction shell sizes on the Cd uptake efficiency
Fig.2  Negatively correlation between Cd and Ca concentration throughout the sorption experiment for 72 h
Ca2+Cd2+ambient temperatureambient humidityHCO3-pH sample
Ca2+1.0000.000a)0.000a)0.000a)0.000a)0.000a)
Cd2+-0.8401.0000.000a)0.0680.000a)0.000a)
ambient temperature0.145-0.1321.0000.6130.0540.000a)
ambient humidity-0.2560.0800.0221.0000.000a)0.789
HCO3-0.787-0.7810.084-0.2591.0000.000a)
pH sample0.459-0.492-0.2900.0120.5051.000
Tab.2  Correlation matrices for all studied parameters ( = 87)
Fig.3  Ca and concentrations as the function of time with respective carbonate shell sizes of (a) 6.70 mm, (b) 4.00 mm, (c) 2.00 mm, (d) 0.80 mm, and (e) 0.40 mm
Fig.4  Evolution of pH after the treatment with respective seashell fraction sizes over 72 h of treatment
Fig.5  SI of aragonite (a) and calcite (b) throughout the 72 h of treatment
1 Hassanien M A, El-Shahawy A M. Environmental Heavy Metal Pollution and Effects on Child Mental Development-Risk Assessment and Prevention Strategies. 1st ed. The Netherlands, Dordrecht: Springer, 2010
2 Rao K S, Mohapatra M, Anand S, Venkateswarlu P. Review on cadmium removal from aqueous solutions. International Journal of Engineering, Science and Technology , 2010. 2(7): 81-103
3 Lee J S, Chon H T, Kim K W. Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site. Environmental Geochemistry and Health , 2005, 27(2): 185-191
doi: 10.1007/s10653-005-0131-6 pmid:16003586
4 Stoeppler M. Cadmium. In: Merian E, ed. Metals and Their Compounds in the Environment, Occurrence, Analysis, and Biological Relevance. New York: VCH publishers, Cambridge, 1991
5 Izadiyar M H, Yargholi B. Study of cadmium and accumulation in different parts of four forages. American-Eurasian Journal of Agricultural and Environmental Sciences , 2010, 9(3): 231-238
6 Yadanaparthi S K R, Graybill D, Wandruszka R V. Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. Journal of Hazardous Materials , 2009, 171(1-3): 1-15
doi: 10.1016/j.jhazmat.2009.05.103 pmid:19540667
7 Sulaymon A H, Abood D W, Ali A H. Removal of phenol and lead from synthetic wastewater by adsorption onto granular activated carbon in fixed bed adsorbers: predication of breakthrough curves. Hydrology: Current Research, 2011, 2(4): 1-5
doi: 10.4172/2157-7587.1000120
8 Milosavljevi? N B, Risti? M ?, Peri?-Gruji? A A, Filipovi? J M, Strbac S B, Rako?evi? Z Lj, Kalagasidis Kru?i? M T. Sorption of zinc by novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid. Journal of Hazardous Materials , 2011, 192(2): 846-854
doi: 10.1016/j.jhazmat.2011.05.093 pmid:21703762
9 Kanawade S M, Gaikwad R W. Removal of zinc ions from industrial effluent by using cork powder as adsorbent. International Journal of Chemical Engineering and Applications , 2011, 2(3): 199-201 IJCEA2011A600
10 Reddad Z, Gerente C, Andres Y, Cloirec P L. Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environmental Science & Technology , 2002, 36(9): 2067-2073
doi: 10.1021/es0102989 pmid:12026994
11 Liu Y, Sun C, Xu J, Li Y. The use of raw and acid-pretreated bivalve mollusk shells to remove metals from aqueous solutions. Journal of Hazardous Materials , 2009, 168(1): 156-162
doi: 10.1016/j.jhazmat.2009.02.009 pmid:19264396
12 Wang J, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology Advances , 2006, 24(5): 427-451
doi: 10.1016/j.biotechadv.2006.03.001 pmid:16737792
13 Veglio F, Beolchini F. Removal of metals by biosorption: a review. Hydrometallurgy , 1997, 44(3): 301-316
doi: 10.1016/S0304-386X(96)00059-X
14 Sahmoune M N, Louhab K, Boukhiar A. Advanced biosorbents materials for removal of chromium from water and wastewaters. Environmental Progress and Sustainable Energy , 2011, 30(3): 284-293
doi: 10.1002/ep.10473
15 Kumar J, Balomajumder C, Mondal P. Application of agro-based biomasses for zinc removal from wastewater - a review. Clean Soil Air Water , 2011, 39(7): 641-652
doi: 10.1002/clen.201000100
16 Kabbashi N A, Daoud J I, Isam Y Q, Mirghami M E S, Rosli N F. Statistical analaysis for removal of cadmium from aqueous solution at high pH. Australian Journal of Basic and Applied Sciences , 2011, 5(6): 440-446 ISSN 1991-8178
17 Babel S, Kurniawan T A. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials , 2003, 97(1-3): 219-243
doi: 10.1016/S0304-3894(02)00263-7 pmid:12573840
18 Demirbas A. Heavy metal adsorption onto agro-based waste materials: a review. Journal of Hazardous Materials , 2008, 157(2-3): 220-229
doi: 10.1016/j.jhazmat.2008.01.024 pmid:18291580
19 Cubillas P, K?hler S, Prieto M, Cha?rat C, Oelkers E H. Experimental determination of the dissolution rates of calcite, aragonite, and bivalves. Chemical Geology , 2005, 216(1-2): 59-77
doi: 10.1016/j.chemgeo.2004.11.009
20 Du Y, Lian F, Zhu L. Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells. Environmental Pollution , 2011, 159(7): 1763-1768
doi: 10.1016/j.envpol.2011.04.017 pmid:21550150
21 Suteu D, Bilba D, Aflori M, Doroftei F, Lisa G, Badeanu M, Malutan T. The seashell wastes as biosorbent for reactive dye removal from textile effluents. Clean Soil Air Water , 2012, 40(2): 198-205
22 Sanchez A G, Ayuso E A, Blas O J D. Sorption of heavy metals from industrial waste water by low-cost mineral silicates. Clay Minerals , 1999, 34(3): 469-477
doi: 10.1180/000985599546370
23 Prieto M, Cubillas P, Fernández-Gonzalez á. Uptake of dissolved Cd by biogenic and abiogenic aragonite: a comparison with sorption onto calcite. Geochimica et Cosmochimica Acta , 2003, 67(20): 3859-3869
doi: 10.1016/S0016-7037(03)00309-0
24 Stylianou M A, Inglezakis V J, Moustakas K G, Malamis S P, Loizidou M D. Removal of Cu(II) in fixed bed and batch reactors using natural zeolite and exfoliated vermiculite as adsorbents. Desalination , 2007, 215(1-3): 133-142
doi: 10.1016/j.desal.2006.10.031
25 Evans J R, Davids W G, MacRae J D, Amirbahman A. Kinetics of cadmium uptake by chitosan-based crab shells. Water Research , 2002, 36(13): 3219-3226
doi: 10.1016/S0043-1354(02)00044-1 pmid:12188118
26 APHA. Standard Methods for the Examination of Water and Wastewater. 21st ed. Washington: American Water Works Association, Water Environment Federation, 2005
27 Appelo C A J, Postma D. Geochemistry, Groundwater and Pollution. 2nd ed. Rotterdam: Balkema, 2005
28 Parkhurst D L, Appelo C A J. User’s Guide to PHREEQC Version 2-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Reston, VA: U.S. Geological Survey, Water Resource Investigation Report, 2005, 99-4259
29 Meena A K, Mishra G K, Rai P K, Rajagopal C, Nagar P N. Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. Journal of Hazardous Materials , 2005, 122(1-2): 161-170
doi: 10.1016/j.jhazmat.2005.03.024 pmid:15878798
30 K?hler S J, Cubillas P, Rodríguez-Blanco J D, Bauer C, Prieto M. Removal of cadmium from wastewaters by aragonite shells and the influence of other divalent cations. Environmental Science & Technology , 2007, 41(1): 112-118
doi: 10.1021/es060756j pmid:17265935
31 Pino G H, Mesquita L M S D, Torem M L, Pinto G A S. Biosorption of cadmium by green coconut shell powder. Minerals Engineering , 2006, 19(5): 380-387
doi: 10.1016/j.mineng.2005.12.003
32 Mehrasbi M R, Farahmandkia Z, Taghibeigloo B, Taromi A. Adsorption of lead and cadmium from aqueous solution by using almond shells. Water, Air, and Soil Pollution , 2009, 199(1-4): 343-351
doi: 10.1007/s11270-008-9883-9
33 Isa M N, Aris A Z. Preliminary assessment on the hydrogeochemistry of kapas island, terengganu. Sains Malaysiana , 2012, 41(1): 23-32 ISSN 0126-6039
34 Chidambaram S, Karmegam U, Sasidhar P, Prasanna M V, Manivannan R, Arunachalam S, Manikandan S, Anandhan P. Significance of saturation index of certain clay minerals in shallow coastal groundwater, in and around Kalpakkam, Tamil Nadu, India. Journal of Earth System Science , 2011, 120(5): 897-909
doi: 10.1007/s12040-011-0105-2
35 Kaur P, Sud D. Adsorption kinetics, isotherms, and desorption of monocrotophos and dichlorvos on various Indian soils. Clean Soil Air Water , 2011, 39(12): 1060-1067
doi: 10.1002/clen.201000289
36 Juang R S, Shao H J. Effect of pH on competitive adsorption of Cu(II), Ni(II), and Zn(II) from water onto chitosan. Adsorption , 2002, 8(1): 71-78
doi: 10.1023/A:1015222607996
[1] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[2] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[3] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[4] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[5] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[6] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[7] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[8] Xinjie Wang, Yang Li, Jian Zhao, Hong Yao, Siqi Chu, Zimu Song, Zongxian He, Wen Zhang. Magnetotactic bacteria: Characteristics and environmental applications[J]. Front. Environ. Sci. Eng., 2020, 14(4): 56-.
[9] Jun Yang, Jingyun Wang, Pengwei Qiao, Yuanming Zheng, Junxing Yang, Tongbin Chen, Mei Lei, Xiaoming Wan, Xiaoyong Zhou. Identifying factors that influence soil heavy metals by using categorical regression analysis: A case study in Beijing, China[J]. Front. Environ. Sci. Eng., 2020, 14(3): 37-.
[10] Lei Zheng, Xingbao Gao, Wei Wang, Zifu Li, Lingling Zhang, Shikun Cheng. Utilization of MSWI fly ash as partial cement or sand substitute with focus on cementing efficiency and health risk assessment[J]. Front. Environ. Sci. Eng., 2020, 14(1): 5-.
[11] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[12] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
[13] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[14] Huosheng Li, Hongguo Zhang, Jianyou Long, Ping Zhang, Yongheng Chen. Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: Bench and pilot scale studies focusing on in-depth thallium removal[J]. Front. Environ. Sci. Eng., 2019, 13(4): 49-.
[15] Christine C. Nguyen, Cody N. Hugie, Molly L. Kile, Tala Navab-Daneshmand. Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 46-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed