Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (3) : 420-427    https://doi.org/10.1007/s11783-013-0489-0
RESEARCH ARTICLE
Chemical deactivation of V2O5-WiO3/TiO2 SCR catalyst by combined effect of potassium and chloride
Xiaodong WU1,2,3(), Wenchao YU1, Zhichun SI2, Duan WENG1,2
1. State Key Laboratory of New Ceramics & Fine Process, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; 2. Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; 3. Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314000, China
 Download: PDF(206 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

V2O5-WO3/TiO2 catalyst was poisoned by impregnation with NH4Cl, KOH and KCl solution, respectively. The catalysts were characterized by X-ray diffraction (XRD), inductively coupled plasma (ICP), N2 physisorption, Raman, UV-vis, NH3 adsorption, temperature-programmed reduction of hydrogen (H2-TPR), temperature-programmed oxidation of ammonia (NH3-TPO) and selective catalytic reduction of NOx with ammonia (NH3-SCR). The deactivation effects of poisoning agents follow the sequence of KCl>KOH>>NH4Cl. The addition of ammonia chloride enlarges the pore size of the titania support, and promotes the formation of highly dispersed V=O vanadyl which improves the oxidation of ammonia and the high-temperature SCR activity. K+ ions are suggested to interact with vanadium and tungsten species chemically, resulting in a poor redox property of catalyst. More importantly, potassium can reduce the Br?nsted acidity of catalysts and decrease the stability of Br?nsted acid sites significantly. The more severe deactivation of the KCl-treated catalyst can be mainly ascribed to the higher amount of potassium resided on catalyst.

Keywords V2O5-WO3/TiO2      potassium chloride      poisoning      reducibility      acid sites     
Corresponding Author(s): WU Xiaodong,Email:wuxiaodong@tsinghua.edu.cn   
Issue Date: 01 June 2013
 Cite this article:   
Xiaodong WU,Wenchao YU,Zhichun SI, et al. Chemical deactivation of V2O5-WiO3/TiO2 SCR catalyst by combined effect of potassium and chloride[J]. Front Envir Sci Eng, 2013, 7(3): 420-427.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0489-0
https://academic.hep.com.cn/fese/EN/Y2013/V7/I3/420
Fig.1  NH-SCR activities of the catalysts
Fig.2  The first-order rate constants for NO reduction
Fig.3  XRD patterns of (1) VWT, (2) VWT(NHCl), (3) VWT(KOH) and (4) VWT(KCl) catalysts
catalystsICPSBET/(m2?g-1)VP/(cm3?g-1)
K+/wt.%Cl-/wt.%
VWT--760.289
VWT(NH4Cl)-0.003780.302
VWT(KOH)0.58-770.270
VWT(KCl)0.660.014770.274
Tab.1  Structural and textural properties of the catalysts
Fig.4  Pore size distributions of the catalysts
Fig.5  Raman spectra of (1) VWT, (2) VWT(NHCl), (3) VWT(KOH) and (4) VWT(KCl) catalysts
Fig.6  UV-vis spectra of (1) VWT, (2) VWT(NHCl), (3) VWT(KOH) and (4) VWT(KCl) catalysts
Fig.7  FTIR spectra of (1) VWT, (2) VWT(NHCl), (3) VWT(KOH) and (4) VWT (KCl) catalysts arising from contact of NH at (a) room temperature and (b) 200°C
Fig.8  H-TPR curves of (1) fresh, (2) VWT(NHCl), (3) VWT(KOH) and (4) VWT(KCl) catalysts
Fig.9  NH oxidation curves of the catalysts
1 Busca G, Lietti L, Ramis G, Berti F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Applied Catalysis B: Environmental , 1998, 18(1-2): 1-36
doi: 10.1016/S0926-3373(98)00040-X
2 Alemany L J, Lietti L, Ferlazzo N, Forzatti P, Busca G, Giamello E, Bregani F. Reactivity and physicochemical characterization of V2O5-WO3/TiO2 de-NOx catalysts. Journal of Catalysis , 1995, 155(1): 117-130
doi: 10.1006/jcat.1995.1193
3 Shi A J, Wang X Q, Yu T, Shen M Q. The effect of zirconia additive on the activity and structure stability of V2O5/WO3-TiO2 ammonia SCR catalysts. Applied Catalysis B: Environmental , 2011, 106(3-4): 359-369
doi: 10.1016/j.apcatb.2011.05.040
4 Chen J P, Yang R T. Role of WO3 in mixed V2O5-WO3/TiO2 catalysts for selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis A: General , 1992, 80(1): 135-148
doi: 10.1016/0926-860X(92)85113-P
5 Kr?cher O, Elsener M. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution I. Catalytic studies. Applied Catalysis B: Environmental , 2007, 75: 241-253
6 Chen L, Li J H, Ge M F. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3. Chemical Engineering Journal , 2011, 170(2-3): 531-537
doi: 10.1016/j.cej.2010.11.020
7 Tang F S, Xu B L, Shi H H, Qiu J H, Fan Y N. The poisoning effect of Na+ and Ca2+ ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental , 2010, 94(1-2): 71-76
doi: 10.1016/j.apcatb.2009.10.022
8 Kamata H, Takahashi K, Odenbrand C H I. The role of K2O in the selective reduction of NO with NH3 over a V2O5(WO3)/TiO2 commercial selective catalytic reduction catalyst. Journal of Molecular Catalysis A Chemical , 1999, 139(2-3): 189-198
doi: 10.1016/S1381-1169(98)00177-0
9 Lisi L, Lasorella G, Malloggi S, Russo G. Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts. Applied Catalysis B: Environmental , 2004, 50(4): 251-258
doi: 10.1016/j.apcatb.2004.01.007
10 Zheng Y J, Jensen A D, Johnsson J E. Laboratory investigation of selective catalytic reduction catalysts: deactivation by potassium compounds and catalyst regeneration. Industrial & Engineering Chemistry Research , 2004, 43(4): 941-947
doi: 10.1021/ie030404a
11 Zheng Y J, Jensen A D, Johnsson J E, Th?gersen J R. Deactivation of V2O5-WO3-TiO2 SCR catalyst at biomass fired power plants: elucidation of mechanisms by lab- and pilot-scale experiments. Applied Catalysis B: Environmental , 2008, 83(3-4): 186-194
doi: 10.1016/j.apcatb.2008.02.019
12 Putluru S S R, Jensen A D, Riisager A, Fehrmann R. Alkali resistivity of Cu based selective catalytic reduction catalysts: potassium chloride aerosol exposure and activity measurements. Catalysis Communications , 2012, 18: 41-46
doi: 10.1016/j.catcom.2011.11.014
13 San José-Alonso D, Illán-Gómez M J, Román-Martínez M C. K and Sr promoted Co alumina supported catalysts for the CO2 reforming of methane. Catalysis Today , 2011, 176(1): 187-190
doi: 10.1016/j.cattod.2010.11.093
14 Tikhomirov K, Kr?cher O, Wokaun A. Influence of potassium doping on the activity and the sulfur poisoning resistance of soot oxidation catalysts. Catalysis Letters , 2006, 109(1-2): 49-53
doi: 10.1007/s10562-006-0055-5
15 Larrubia M A, Busca G. An ultraviolet-visible-near infrared study of the electronic structure of oxide-supported vanadia-tungsta and vanadia-molybdena. Materials Chemistry and Physics , 2001, 72(3): 337-346
doi: 10.1016/S0254-0584(01)00329-7
16 Ramis G, Yi L, Busca G. Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3: an FT-IR study. Catalysis Today , 1996, 28(4): 373-380
doi: 10.1016/S0920-5861(96)00050-8
17 Wan Q, Duan L, Li J H, Chen L, He K B, Hao J M. Deactivation performance and mechanism of alkali (earth) metals on V2O5-WO3/TiO2 catalyst for oxidation of gaseous elemental mercury in simulated coal-fired flue gas. Catalysis Today , 2011, 175(1): 189-195
doi: 10.1016/j.cattod.2011.03.011
18 Gazzoli D, De Rossi S, Ferraris G, Mattei G, Spinicci R, Valigi M. Bulk and surface structures of V2O5/ZrO2 catalysts for n-butane oxidative dehydrogenation. Journal of Molecular Catalysis A: Chemical , 2009, 310(1-2): 17-23
doi: 10.1016/j.molcata.2009.05.014
19 Bulushev D A, Rainone F, Kiwi-Minsker L, Renken A. Influence of potassium doping on the formation of vanadia species in V/Ti oxide catalysts. Langmuir , 2001, 17(17): 5276-5282
doi: 10.1021/la010077g
20 Huang S J, Liu S L, Zhu Q J, Zhu X X, Xin W J, Liu H J, Feng Z C, Li C, Xie S J, Wang Q X, Xu L Y. The effect of calcination time on the activity of WO3/Al2O3/HY catalysts for the metathesis reaction between ethene and 2-butene. Applied Catalysis A: General , 2007, 323: 94-103
doi: 10.1016/j.apcata.2007.02.004
21 Erd?helyi A, Németh R, Hancz A, Oszkó A. Partial oxidation of methane on potassium-promoted WO3/SiO2 and on K2WO4/SiO2 catalysts. Applied Catalysis A: General , 2001, 211(1): 109-121
doi: 10.1016/S0926-860X(00)00859-0
[1] Yong Song,Lisha Liu,Zhidan Fu,Qing Ye,Shuiyuan Cheng,Tianfang Kang,Hongxing Dai. Excellent performance of Cu-Mn/Ti-sepiolite catalysts for low-temperature CO oxidation[J]. Front. Environ. Sci. Eng., 2017, 11(2): 5-.
[2] Boxiong SHEN, Lidan DENG, Jianhong CHEN. Effect of K and Ca on catalytic activity of Mn-CeOx/Ti-PILC[J]. Front Envir Sci Eng, 2013, 7(4): 512-517.
[3] Zhendong YANG, Aihua LV, Yulun NIE, Chun HU. Catalytic ozonation performance and surface property of supported Fe3O4 catalysts dispersions[J]. Front Envir Sci Eng, 2013, 7(3): 451-456.
[4] Shicheng XU, Junhua LI, Dong YANG, Jiming HAO. Effects of support acidity on the reaction mechanisms of selective catalytic reduction of NO by CH4 in excess oxygen[J]. Front Envir Sci Eng Chin, 2009, 3(2): 186-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed