Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2014, Vol. 8 Issue (2) : 205-214    https://doi.org/10.1007/s11783-013-0492-5
RESEARCH ARTICLE
Responses of bacterial strains isolated from drinking water environments to N-acyl-L-homoserine lactones and their analogs during biofilm formation
Zhuoying WU, Qing WANG, Feng GUO, Shenghua ZHANG, Qipei JIANG(), Xin YU()
Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
 Download: PDF(347 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Often as a result of biofilm formation, drinking water distribution systems (DWDS) are regularly faced with the problem of microbial contamination. Quorum sensing (QS) systems play a marked role in the regulation of microbial biofilm formation; thus, inhibition of QS systems may provide a promising approach to biofilm formation control in DWDS. In the present study, 22 bacterial strains were isolated from drinking water-related environments. The following properties of the strains were investigated: bacterial biofilm formation capacity, QS signal molecule N-acyl-L-homoserine lactones (AHLs) production ability, and responses to AHLs and AHL analogs, 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) and 2(5H)-furanone. Four AHLs were added to developed biofilms at dosages ranging from 0.1?nmol·L-1 to 100 nmol·L-1. As a result, the biofilm growth of more than 1/4 of the isolates, which included AHL producers and non-producers, were significantly promoted. Further, the biofilm biomasses were closely associated with respective AHLs concentrations. These results provided evidence to support the idea that AHLs play a definitive role in biofilm formation in many of the studied bacteria. Meanwhile, two AHLs analogs demonstrated unexpectedly minimal negative effects on biofilm formation. This suggested that, in order to find an applicable QS inhibition approach for biofilm control in DWDS, the testing and analysis of more analogs is needed.

Keywords drinking water distribution systems (DWDS)      biofilm      quorum sensing (QS)      N-acyl-L-homoserine lactones (AHLs)      (dichloromethyl)-5-hydroxy-2(5H)-furanone (MX)      2(5H)-furanone     
Corresponding Author(s): JIANG Qipei,Email:qpjiang@iue.ac.cn; YU Xin,Email:xyu@iue.ac.cn   
Issue Date: 01 April 2014
 Cite this article:   
Zhuoying WU,Qing WANG,Feng GUO, et al. Responses of bacterial strains isolated from drinking water environments to N-acyl-L-homoserine lactones and their analogs during biofilm formation[J]. Front Envir Sci Eng, 2014, 8(2): 205-214.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0492-5
https://academic.hep.com.cn/fese/EN/Y2014/V8/I2/205
No.bacteria isolatesourceAHL activitya)biofilm formationb)
01-Re102-Re503-Ri2 04-T205-T306-Re207-Re308-Ri109-Ri410-ACG311-ACG412-ACG113-ACG214-ACG715-ACG516-ACG617-Re418-Re619-Ri320-Ri521-T122-T4Pseudomonas sp1.Pseudomonas sp2.Brevundimonas sp1.Brevundimonas sp2.Sphingomonas sp.Flavobacterium sp.Klebsiella sp1.Klebsiella sp2.Klebsiella sp3.Bacillus sp1.Bacillus sp2.Lysinibacillus sp1.Lysinibacillus sp2.Lysinibacillus sp3.Lysinibacillus sp4.Lysinibacillus sp5.Brevibacillus sp.Paenibacillus sp.Microbacterium sp1.Microbacterium sp2.Microbacterium sp3.Brevibacterium sp.reservoirreservoirrivertap watertap waterreservoirreservoirriverriverACGACGACGACGACGACGACGreservoirreservoirriverrivertap watertap water----+-+----------+----+++++++++++++++++++++++++++++++++++++++++++
Tab.1  Molecular identi?cation, AHL production and biofilm formation characterization of strains isolated from drinking water environments
Fig.1  Biofilm biomass of strains isolated from drinking water environments
type characteristicbacterial isolate
IAHL detected,biofilm influenced by QSKlebsiella 07-Re3; Paenibacillus 18-Re6
IIAHL not detected,biofilm influenced by QSFlavobacterium 06-Re2; Brevundimonas 04-T2;Brevibacillus 17-Re4
IIIAHL detected,biofilm not influenced by QSSphingomonas 05-T3
IVAHL not detected,biofilm not influenced by QSPseudomonas 01-Re1; Pseudomona 02-Re5;Brevundimonas 03-Ri2; Klebsiella 08-Ri1; Klebsiella 09-Ri4;Microbacterium 21-T1; Brevibacterium 22-T4;Microbacterium 19-Ri3; Microbacterium 20-Ri5;Bacillus 10-ACG3; Bacillus 11-ACG4;Lysinibacillus 12-ACG1; Lysinibacillus 13-ACG2;Lysinibacillus 14-ACG7; Lysinibacillus 15-ACG5; Lysinibacillus 16-ACG6
Tab.2  Classification of strains from drinking water environments
Fig.2  Responses of bacterial biofilms to AHL addition: (a) strain 18-Re6; (b) strain 07-Re3; (c) strain 17-Re4; (d) strain 04-T2; (e) strain 06-Re2; (f) strain 05-T3; (g) strain 03-Ri2
Fig.3  Responses of bacterial biofilms to MX addition
Fig.4  Responses of bacterial biofilms to 2(5H)-furanone addition
1 Lechevallier M W, Babcock R M, Lee R G. Examination and characterization of distribution system biofilms. Applied and Environmental Microbiology , 1987, 53(12): 2714–2724
2 Momba M N B, Kfir R, Venter S N, Cloete T E. An overview of biofilm formation in distribution systems and its impact on the deterioration of water quality. Water SA , 2000, 26(1): 59–66
3 Van Der Kooij D. Managing regrowth in drinking water distribution systems. In: Bartram J, Cotruvo J, Exner M, Fricker C, Glasmacher A, eds. Heterotrophic Plate Counts and Drinking-Water Safety . 1st ed. London: IWA Publishing, 2003, 199–232
4 Nagy L A, Olson B H. Occurrence and significance of bacteria, fungi and yeasts associated with distribution pipe surfaces. In: Proceedings of the American Water Works Association, Water Quality Technical Conference 2005 . American Water Works Association, Denver, Colo, 1985, 202–207
5 Critchley M M, Fallowfield H J. The effect of distribution system bacterial biofilms on copper concentrations in drinking water. Water Science and Technology: Water Supply , 2001, 1(4): 247–252
6 Block J C. Biofilms in drinking water distribution system. In: Melo L F, Bott T R, Fletcher M, Capdeville B, editors. Biofilms—Science and Technology . Dordrecht: Kluwer Academic, 1992, 469–485
7 Niquette P, Servais P, Savoir R. Impacts of pipe materials on densities of fixed bacterial biomass in a drinking water distribution system. Water Research , 2000, 34(6): 1952–1956
doi: 10.1016/S0043-1354(99)00307-3
8 Tsai Y P. Impact of flow velocity on the dynamic behaviour of biofilm bacteria. Biofouling , 2005, 21(5–6): 267–277
doi: 10.1080/08927010500398633
9 Sim?es L C, Azevedo N, Pacheco A, Keevil C W, Vieira M J. Drinking water biofilm assessment of total and culturable bacteria under different operating conditions. Biofouling , 2006, 22(2): 91–99
doi: 10.1080/08927010600598603
10 Miller M B, Bassler B L. Quorum sensing in bacteria. Annual Review of Microbiology , 2001, 55(1): 165–199
doi: 10.1146/annurev.micro.55.1.165
11 Bassler B L. Small talk: cell-to-cell communication in bacteria. Cell , 2002, 109(4): 421–424
doi: 10.1016/S0092-8674(02)00749-3
12 Waters C M, Bassler B L. Quorum sensing: cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology , 2005, 21(1): 319–346
doi: 10.1146/annurev.cellbio.21.012704.131001
13 Parsek M R, Greenberg E P. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proceedings of the National Academy of Sciences of the United States of America , 2000, 97(16): 8789–8793
doi: 10.1073/pnas.97.16.8789
14 Davies D G, Parsek M R, Pearson J P, Iglewski B H, Costerton J W, Greenberg E P. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science , 1998, 280(5361): 295–298
doi: 10.1126/science.280.5361.295
15 Baveja J K, Willcox M D P, Hume E B H, Kumar N, Odell R, Poole-Warren L A. Furanones as potential anti-bacterial coatings on biomaterials. Biomaterials , 2004, 25(20): 5003–5012
doi: 10.1016/j.biomaterials.2004.02.051
16 Dong Y H, Wang L H, Xu J L, Zhang H B, Zhang X F, Zhang L H. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature , 2001, 411(6839): 813–817
doi: 10.1038/35081101
17 Yeon K, Cheong W, Oh H, Lee W, Hwang B, Lee C, Beyenal H, Lewandowski Z. Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. Environmental Science & Technology , 2009, 43(2): 380–385
doi: 10.1021/es8019275
18 Kappachery S, Paul D, Yoon J, Kweon J H. Vanillin, a potential agent to prevent biofouling of reverse osmosis membrane. Biofouling , 2010, 26(6): 667–672
doi: 10.1080/08927014.2010.506573
19 Rice S A, Koh K S, Queck S Y, Labbate M, Lam K W, Kjelleberg S. Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. Journal of Bacteriology , 2005, 187(10): 3477–3485
doi: 10.1128/JB.187.10.3477-3485.2005
20 Morohoshi T, Shiono T, Takidouchi K, Kato M, Kato N, Kato J, Ikeda T. Inhibition of quorum sensing in Serratia marcescens AS-1 by synthetic analogs of N-acylhomoserine lactone. Applied and Environmental Microbiology , 2007, 73(20): 6339–6344
doi: 10.1128/AEM.00593-07
21 Reasoner D J, Geldreich E E. A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology , 1985, 49(1): 1–7
22 Gürtler V, Stanisich V A. New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiology , 1996, 142(1): 3–16
doi: 10.1099/13500872-142-1-3
23 Altschul S F, Gish W, Miller W, Myers E W, Lipmanl D J. Basic local alignment search tool. Journal of Molecular Biology , 1990, 215(3): 403–410
24 Stepanovi? S, Vukovi? D, Daki? I, Savi? B, ?vabi?-Vlahovi? M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of Microbiological Methods , 2000, 40(2): 175–179
doi: 10.1016/S0167-7012(00)00122-6
25 McLean R J C, Pierson L S III, Fuqua C. A simple screening protocol for the identification of quorum signal antagonists. Journal of Microbiological Methods , 2004, 58(3): 351–360
doi: 10.1016/j.mimet.2004.04.016
26 Zhu J, Chai Y, Zhong Z, Li S, Winans S C. Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: detection of autoinducers in mesorhizobium huakuii. Applied and Environmental Microbiology , 2003, 69(11): 6949–6953
doi: 10.1128/AEM.69.11.6949-6953.2003
27 Kirisits M J, Parsek M R. Does Pseudomonas aeruginosa use intercellular signaling to build biofilm communities? Cellular Microbiology , 2006, 8(12): 1841–1849
doi: 10.1111/j.1462-5822.2006.00817.x
28 Lynch M J, Swift S, Kirke D F, Keevil C W, Dodd C E, Williams P. The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environmental Microbiology , 2002, 4(1): 18–28
doi: 10.1046/j.1462-2920.2002.00264.x
29 Tomlin K L, Malott R J, Ramage G, Storey D G, Sokol P A, Ceri H. Quorum-sensing mutations affect attachment and stability of Burkholderia cenocepacia biofilms. Applied and Environmental Microbiology , 2005, 71(9): 5208–5218
doi: 10.1128/AEM.71.9.5208-5218.2005
30 Parsek M R, Greenberg E P. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends in Microbiology , 2005, 13(1): 27–33
doi: 10.1016/j.tim.2004.11.007
31 Atkinson S, Throup J P, Stewart G S, Williams P. A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Molecular Microbiology , 1999, 33(6): 1267–1277
doi: 10.1046/j.1365-2958.1999.01578.x
32 Hammer B K, Bassler B L. Quorum sensing controls biofilm formation in Vibrio cholera. Molecular Microbiology , 2003, 50(1): 101–104
doi: 10.1046/j.1365-2958.2003.03688.x
33 Zhu J, Mekalanos J J. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholera. Developmental Cell , 2003, 5(4): 647–656
doi: 10.1016/S1534-5807(03)00295-8
34 Simoes L C, Simoes M, Vieira M J. Influence of the diversity of bacterial isolates from drinking water on the resistance of biofilms to disinfection. Applied and Environmental Microbiology , 2010, 76(19): 6673–6679
doi: 10.1128/AEM.00872-10
35 Le?o R S, Pereira R H V, Ferreira A G, Lima A N, Albano R M, Marques E A. First report of Paenibacillus cineris from a patient with cystic fibrosis. Diagnostic Microbiology and Infectious Disease , 2010, 66(1): 101–103
doi: 10.1016/j.diagmicrobio.2009.06.011
36 Kim S, Lee S, Hong S, Oh Y, Seoul M, Kweon J, Kim T. Biofouling of reverse osmosis membranes: microbial quorum sensing and fouling propensity. Desalination , 2009, 247(1–3): 303–315
doi: 10.1016/j.desal.2008.12.033
37 Ren T T, Yu H Q, Li X Y. The quorum-sensing effect of aerobic granules on bacterial adhesion, biofilm formation, and sludge granulation. Applied Microbiology and Biotechnology , 2010, 88(3): 789–797
doi: 10.1007/s00253-010-2796-8
38 Wang H, Cai T, Weng M, Zhou J, Cao H, Zhong Z, Zhu J. Conditional production of acyl-homoserine lactone-type quorum-sensing signals in clinical isolates of enterobacteria. Journal of Medical Microbiology , 2006, 55(12): 1751–1753
doi: 10.1099/jmm.0.46756-0
39 O’Toole G A, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm. Molecular Microbiology , 1998, 30(2): 295–304
doi: 10.1046/j.1365-2958.1998.01062.x
40 Pratt L A, Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology , 1998, 30(2): 285–293
doi: 10.1046/j.1365-2958.1998.01061.x
41 Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology , 2001, 147(9): 2517–2528
42 Michael B, Smith J N, Swift S, Heffron F, Ahmer B M. SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. Journal of Bacteriology , 2001, 183(19): 5733–5742
doi: 10.1128/JB.183.19.5733-5742.2001
43 Schauder S, Shokat K, Surette M G, Bassler B L. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Molecular Microbiology , 2001, 41(2): 463–476
doi: 10.1046/j.1365-2958.2001.02532.x
44 Rickard A H, Palmer R JBlehert D S, Campagna S R, Semmelhack M F, Egland P G, Bassler B L, Kolenbrander P E. Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Molecular Microbiology , 2006, 60(6): 1446–1456
doi: 10.1111/j.1365-2958.2006.05202.x
45 Czajkowski R, Jafra S. Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochimica Polonica , 2009, 56(1): 1–16
46 Xiong Y, Liu Y. Biological control of microbial attachment: a promising alternative for mitigating membrane biofouling. Applied Microbiology and Biotechnology , 2010, 86(3): 825–837
doi: 10.1007/s00253-010-2463-0
47 Hemming J, Holmbom B, Reunanen M, Kronberg L. Determination of the strong mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone in chlorinated drinking and humic waters. Chemosphere , 1986, 15(5): 549–556
doi: 10.1016/0045-6535(86)90003-2
48 Persson T, Givskov M, Nielsen J. Quorum sensing inhibition: targeting chemical communication in gram-negative bacteria. Current Medicinal Chemistry , 2005, 12(26): 3103–3115
doi: 10.2174/092986705774933425
[1] Shujuan Meng, Rui Wang, Kaijing Zhang, Xianghao Meng, Wenchao Xue, Hongju Liu, Dawei Liang, Qian Zhao, Yu Liu. Transparent exopolymer particles (TEPs)-associated protobiofilm: A neglected contributor to biofouling during membrane filtration[J]. Front. Environ. Sci. Eng., 2021, 15(4): 64-.
[2] Aoshuang Jing, Tao Liu, Xie Quan, Shuo Chen, Yaobin Zhang. Enhanced nitrification in integrated floating fixed-film activated sludge (IFFAS) system using novel clinoptilolite composite carrier[J]. Front. Environ. Sci. Eng., 2019, 13(5): 69-.
[3] Wanqi Qi, Weiying Li, Junpeng Zhang, Xuan Wu, Jie Zhang, Wei Zhang. Effect of biological activated carbon filter depth and backwashing process on transformation of biofilm community[J]. Front. Environ. Sci. Eng., 2019, 13(1): 15-.
[4] Xiao Quan, Kai Huang, Mei Li, Meichao Lan, Baoan Li. Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aerated biofilm reactor[J]. Front. Environ. Sci. Eng., 2018, 12(6): 5-.
[5] Yonglei Wang, Baozhen Liu, Kefeng Zhang, Yongjian Liu, Xuexin Xu, Junqi Jia. Investigate of in situ sludge reduction in sequencing batch biofilm reactor: Performances, mechanisms and comparison of different carriers[J]. Front. Environ. Sci. Eng., 2018, 12(5): 5-.
[6] Qiang He, Yinying Zhu, Guo Li, Leilei Fan, Hainan Ai, Xiaoliu Huangfu, Hong Li. Impact of dissolved oxygen on the production of nitrous oxide in biological aerated filters[J]. Front. Environ. Sci. Eng., 2017, 11(6): 16-.
[7] Yu Qi, Jin Li, Rui Liang, Sitong Ji, Jianxiang Li, Meng Liu. Chemical additives affect sulfate reducing bacteria biofilm properties adsorbed on stainless steel 316L surface in circulating cooling water system[J]. Front. Environ. Sci. Eng., 2017, 11(2): 14-.
[8] Xiaoyan Song, Rui Liu, Lujun Chen, Tomoki Kawagishi. Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: simultaneous removal of nitrogen and antibiotics[J]. Front. Environ. Sci. Eng., 2017, 11(2): 11-.
[9] Hallvard Ødegaard. A road-map for energy-neutral wastewater treatment plants of the future based on compact technologies (including MBBR)[J]. Front. Environ. Sci. Eng., 2016, 10(4): 2-.
[10] Veena Bangalore Rangappa, Vidya Shetty Kodialbail, Saidutta Malur Bharthaiyengar. Effect of dilution rate on dynamic and steady-state biofilm characteristics during phenol biodegradation by immobilized Pseudomonas desmolyticum cells in a pulsed plate bioreactor[J]. Front. Environ. Sci. Eng., 2016, 10(4): 16-.
[11] Feng ZHANG,Shengsong YU,Jie LI,Wenwei LI,Hanqing YU. Mechanisms behind the accelerated extracellular electron transfer in Geobacter sulfurreducens DL-1 by modifying gold electrode with self-assembled monolayers[J]. Front. Environ. Sci. Eng., 2016, 10(3): 531-538.
[12] Yanling WEI,Xunfei YIN,Lu QI,Hongchen WANG,Yiwei GONG,Yaqian LUO. Effects of carrier-attached biofilm on oxygen transfer efficiency in a moving bed biofilm reactor[J]. Front. Environ. Sci. Eng., 2016, 10(3): 569-577.
[13] Ning YAN,Lu WANG,Ling CHANG,Cuiyi ZHANG,Yang ZHOU,Yongming ZHANG,Bruce E. RITTMANN. Coupled aerobic and anoxic biodegradation for quinoline and nitrogen removals[J]. Front. Environ. Sci. Eng., 2015, 9(4): 738-744.
[14] Minmin LIU,Ying ZHAO,Beidou XI,Li’an HOU,Xunfeng XIA. Performance of a hybrid anaerobic-contact oxidation biofilm baffled reactor for the treatment of decentralized molasses wastewater[J]. Front.Environ.Sci.Eng., 2014, 8(4): 598-606.
[15] Hailiang SONG, Xianning LI, Wei LI, Xiwu LU. Role of biologic components in a novel floating-bed combining Ipomoea aquatic, Corbicula fluminea and biofilm carrier media[J]. Front Envir Sci Eng, 2014, 8(2): 215-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed