Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    0, Vol. Issue () : 589-597    https://doi.org/10.1007/s11783-013-0495-2
RESEARCH ARTICLE
PCDD/Fs emission, risk characterization, and reduction in China’s secondary copper production industry
Haiqian LI1,2, Yonglong LU1(), Li LI1,2
1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 2. University of Chinese Academy of Sciences, Beijing 100039, China
 Download: PDF(391 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Secondary copper production is one of the key polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) emission sources in China, but research and data on this issue are rare. In 2004, when the Stockholm Convention entered into force in China, PCDD/Fs emissions from secondary copper production contributed to 32.2% of the total release. In this paper, PCDD/Fs emission dynamics from secondary copper industry were discussed and cumulative risks were characterized. From 2004 to 2009, industrial policies played an indirect role in PCDD/Fs reduction, but its effects are still limited. The Yangtze River Delta, Pearl River Delta and central regions were among the top three of dioxin emissions from secondary copper production in China. Shanghai, Shandong, Zhejiang, and Jiangxi had comparatively higher accumulated risk and were recommended as the priority regions for promoting PCDD/Fs emission control in China. From 2009 to 2015, the PCDD/Fs emission dynamics in the secondary copper industry were presented through simulation. PCDD/Fs emission equations were established, resulting in the recommendation of control technology conversion rate at 30% for small scale smelters and 51%–57% for large and medium-sized enterprises in 2015. In conclusion, both indirect policy and direct control technology retrofitting should be integrated for more effective PCDD/Fs emission reduction in secondary copper industry.

Keywords polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs)      secondary copper production      emission      risk      China     
Corresponding Author(s): LU Yonglong,Email:yllu@rcees.ac.cn   
Issue Date: 01 August 2013
 Cite this article:   
Haiqian LI,Yonglong LU,Li LI. PCDD/Fs emission, risk characterization, and reduction in China’s secondary copper production industry[J]. Front Envir Sci Eng, 0, (): 589-597.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0495-2
https://academic.hep.com.cn/fese/EN/Y0/V/I/589
Fig.1  Basic processes of secondary copper production in China
Fig.2  PCDD/Fs emission variation according to adjustment of industrial structure
Fig.3  PCDD/Fs emissions cumulative distribution from secondary copper production in China 2004-2009 (No data from Hong Kong, Macao, and Taiwan)
orderregional emission land load indexper capita emissions load indexmedian emission indexpopulation impact index
1ShanghaiJiangxiShanghaiShanghai
2TianjinZhejiangTianjinShandong
3ZhejiangShanghaiZhejiangZhejiang
4ShandongShandongJiangxiJiangxi
5JiangxiTianjinShandongAnhui
6AnhuiXizangAnhuiHenan
7JiangsuAnhuiJiangsuJiangsu
8HenanHenanHenanGuangdong
9GuangdongJiangsuGuangdongTianjin
10HubeiYunnanFujianHubei
Tab.1  PCDD/Fs emissions risk of the four indexes, ranked by region (2004-2009)
Fig.4  Population impact index accumulative value variation in 2004-2009 (No data from Hong Kong, Macao, and Taiwan)
Fig.5  PCDD/Fs emissions from secondary copper production in business as usual conditions (2009-2015)
-5%-2.5%0+ 2.5%+ 5%
K1, K2 = 55%,ΔY = RY-Y201550%, -11.152.5%, 24.4555%, 6057.5%, 95.7060%, 131.32
K2, K1 = 30%ΔY= RY-Y201525%, -153.6827.5%, -46.830%, 6032.5%, 166.9435%, 273.82
Tab.2  Sensitivity analysis results of the recommended portfolio ( = 30%, = 55%, = 5%)
1 UNEP. The Stockholm Convention on Persistent Organic Pollution. 2004. Available online at http://chm.pops.int/Convention/ConventionText/tabid/2232/Default.aspx (accessed November19, 2012)
2 Kannan K, Aldous K M. Dioxins. In: Worsfold P, Townshend A, Poole C, eds. Encyclopedia of Analytical Science . Oxford: Elsevier, 2005
3 Zheng G J, Leung A O W, Jiao L P, Wong M H. Polychlorinated dibenzo-p-dioxins and dibenzofurans pollution in China: sources, environmental levels and potential human health impacts. Environment International , 2008, 34(7): 1050-1061
doi: 10.1016/j.envint.2008.02.011 pmid:18440070
4 Srogi K. Levels and congener distributions of PCDDs, PCDFs and dioxin-like PCBs in environmental and human samples: a review. Environmental Chemistry Letters , 2008, 6(1): 1-28
doi: 10.1007/s10311-007-0105-2
5 Chen C M. The emission inventory of PCDD/PCDF in Taiwan. Chemosphere , 2004, 54(10): 1413-1420
doi: 10.1016/j.chemosphere.2003.10.039 pmid:14659943
6 Ba T, Zheng M H, Zhang B, Liu W B, Xiao K, Zhang L F. Estimation and characterization of PCDD/Fs and dioxin-like PCBs from secondary copper and aluminum metallurgies in China. Chemosphere , 2009, 75(9): 1173-1178
doi: 10.1016/j.chemosphere.2009.02.052 pmid:19329140
7 Tian B, Huang J, Wang B, Deng S, Yu G. Emission characterization of unintentionally produced persistent organic pollutants from iron ore sintering process in China. Chemosphere , 2012, 89(4): 409-415
doi: 10.1016/j.chemosphere.2012.05.069 pmid:22727897
8 Li H, Lu Y, Luo W, Gosens J, Li L.Polychlorinated dibenzo-p-dioxins and dibenzofurans emissions in a primary copper smelter in China. Chemistry and Ecology,2012,
doi: 10.1080/02757540.2012.744832
9 China Environmental Protection Administration. The People’s Republic of China National Implementation Plan for the Stockholm Convention on Persistent Organic Pollutants 2007. Available online at http://www.china-pops.net/download_view.asp?id=90 (accessed November19, 2012)
10 Nie Z, Liu G, Liu W, Zhang B, Zheng M. Characterization and quantification of unintentional POP emissions from primary and secondary copper metallurgical processes in China. Atmospheric Environment , 2012, 57(9): 109-115
doi: 10.1016/j.atmosenv.2012.04.048
11 Lee C C, Shih T S, Chen H L. Distribution of air and serum PCDD/F levels of electric arc furnaces and secondary aluminum and copper smelters. Journal of Hazardous Materials , 2009, 172(2-3): 1351-1356
doi: 10.1016/j.jhazmat.2009.07.148 pmid:19717228
12 Yu B W, Jin G Z, Moon Y H, Kim M K, Kyoung J D, Chang Y S. Emission of PCDD/Fs and dioxin-like PCBs from metallurgy industries in S. Korea. Chemosphere , 2006, 62(3): 494-501
doi: 10.1016/j.chemosphere.2005.04.031 pmid:15939459
13 Hu J, Zheng M, Nie Z, Liu W, Liu G, Zhang B, Xiao K. Polychlorinated dibenzo-p-dioxin and dibenzofuran and polychlorinated biphenyl emissions from different smelting stages in secondary copper metallurgy. Chemosphere , 2012, 90(1): 89-94
14 Kakuta Y, Matsuto T, Tojo Y, Tomikawa H. Characterization of residual carbon influencing on de novo synthesis of PCDD/Fs in MSWI fly ash. Chemosphere , 2007, 68(5): 880-886
doi: 10.1016/j.chemosphere.2007.02.017 pmid:17412391
15 Lin W Y, Wang L C, Wang Y F, Li H W, Chang C, Guo P. Removal characteristics of PCDD/Fs by the dual bag filter system of a fly ash treatment plant. Journal of Hazardous Materials , 2008, 153(3): 1015-1022
doi: 10.1016/j.jhazmat.2007.09.054 pmid:17961915
16 Chen T, Yan J H, Lu S Y, Li X D, Gu Y L, Dai H F, Ni M J, Cen K F. Characteristic of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from incinerators in China. Journal of Hazardous Materials , 2008, 150(3): 510-514
doi: 10.1016/j.jhazmat.2007.04.131 pmid:17574738
17 Guerriero E, Guarnieri A, Mosca S, Rossetti G, Rotatori M. PCDD/Fs removal efficiency by electrostatic precipitator and wet fine scrubber in an iron ore sintering plant. Journal of Hazardous Materials , 2009, 172(2-3): 1498-1504
doi: 10.1016/j.jhazmat.2009.08.019 pmid:19733437
18 ?berg T. Low-temperature formation and degradation of chlorinated benzenes, PCDD and PCDF in dust from steel production. Science of the total environment , 2007, 382(1): 153-158
doi: 10.1016/j.scitotenv.2007.03.015 pmid:17451790
19 Chemicals U N E P. Standardized Toolkit for Identification and Quantification of Dioxin and Furan Releases. 2005. Available online at http://chm.pops.int/Overview/tabid/372/Default.aspx (accessed November19, 2012)
20 Zhu J, Hirai Y, Sakai S I, Zheng M. Potential source and emission analysis of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in China. Chemosphere , 2008, 73(1 Suppl): S72-S77
doi: 10.1016/j.chemosphere.2007.06.092 pmid:18439643
21 China Environmental Protection Administration. Dioxin Pollution Prevention Guidance. 2010 SEPA No.123 . 2010. Available online at http://www.zhb.gov.cn/gkml/hbb/bwj/201011/t20101104_197138.htm (accessed November19, 2012)
22 Zheng M, Sun Y, Liu W. Dioxin Emission Inventory Research in China. Beijing: China Environmental Scientific Press, 2008, 85-105
23 Yu G, Yang X, Huang J. Dioxin Emission Reduction Strategy Research in China. Beijing: China Environmental Science Press, 2008
24 China Non-Ferrous Metal Association. China Secondary Non-Ferrous Metals Special Plan 2009-2015. 2011. Available online at http://www.cnmc.com.cn/detail.jsp?article_millseconds=1318934732316&column_no=010304 (accessed November19, 2012)
25 China’s Ministry of Industrial and Information Technology. China’s Secondary Non-Ferrous Industry Development and Promotion Plan. 2011. Available online at http://www.miit.gov.cn/n11293472/n11293832/n11294042/n11302360/13644605.html (accessed November19, 2012)
[1] Zhou Yang, Murui Zheng, Ze-Lin Yan, Hui Liu, Xiangyi Liu, Jie-Qi Jin, Jiagang Wu, Chun-Quan Ou. Magnitude and direction of temperature variability affect hospitalization for myocardial infarction and stroke: population-based evidence from Guangzhou, China[J]. Front. Environ. Sci. Eng., 2024, 18(3): 27-.
[2] Yating Wei, Dong Hu, Chengsong Ye, Heng Zhang, Haoran Li, Xin Yu. Drinking water quality & health risk assessment of secondary water supply systems in residential neighborhoods[J]. Front. Environ. Sci. Eng., 2024, 18(2): 18-.
[3] Lewei Zeng, Fengbin Wang, Shupei Xiao, Xuan Zheng, Xintong Li, Qiyuan Xie, Xiaoyang Yu, Cheng Huang, Qingyao Hu, Yan You, Ye Wu. Characterization and prediction of tailpipe ammonia emissions from in-use China 5/6 light-duty gasoline vehicles[J]. Front. Environ. Sci. Eng., 2024, 18(1): 6-.
[4] Jinglu Song, Yi Lu, Thomas Fischer, Kejia Hu. Effects of the urban landscape on heatwave-mortality associations in Hong Kong: comparison of different heatwave definitions[J]. Front. Environ. Sci. Eng., 2024, 18(1): 11-.
[5] Jinbo Wang, Jiaping Wang, Wei Nie, Xuguang Chi, Dafeng Ge, Caijun Zhu, Lei Wang, Yuanyuan Li, Xin Huang, Ximeng Qi, Yuxuan Zhang, Tengyu Liu, Aijun Ding. Response of organic aerosol characteristics to emission reduction in Yangtze River Delta region[J]. Front. Environ. Sci. Eng., 2023, 17(9): 114-.
[6] Hao Zheng, Jian Cheng, Hung Chak Ho, Baoli Zhu, Zhen Ding, Wencong Du, Xin Wang, Yang Yu, Juan Fei, Zhiwei Xu, Jinyi Zhou, Jie Yang. Evaluating the short-term effect of ambient temperature on non-fatal outdoor falls and road traffic injuries among children and adolescents in China: a time-stratified case-crossover study[J]. Front. Environ. Sci. Eng., 2023, 17(9): 105-.
[7] Chenglin Cai, Juexiu Li, Yi He, Jinping Jia. Target the neglected VOCs emission from iron and steel industry in China for air quality improvement[J]. Front. Environ. Sci. Eng., 2023, 17(8): 95-.
[8] Lihua Pang, Qianhui Lin, Shasha Zhao, Hao Zheng, Chenguang Li, Jing Zhang, Cuizhu Sun, Lingyun Chen, Fengmin Li. Data quality assessment for studies investigating microplastics and nanoplastics in food products: Are current data reliable?[J]. Front. Environ. Sci. Eng., 2023, 17(8): 94-.
[9] Xu Zhao, Wei Li, Wei Wang, Jingjing Liu, Yunjiang Yu, Yang Li, Xichao Chen, Yun Liu. Legacies and health risks of heavy metals, polybrominated diphenyl ethers, and polychlorinated dibenzo-dioxins/furans at e-waste recycling sites in South China[J]. Front. Environ. Sci. Eng., 2023, 17(7): 79-.
[10] Shengqi Zhang, Qian Yin, Siqin Wang, Xin Yu, Mingbao Feng. Integrated risk assessment framework for transformation products of emerging contaminants: what we know and what we should know[J]. Front. Environ. Sci. Eng., 2023, 17(7): 91-.
[11] Junmei Guo, Yuexing Wei, Junxing Yang, Tongbin Chen, Guodi Zheng, Tianwei Qian, Xiaona Liu, Xiaofei Meng, Mengke He. Cultivars and oil extraction techniques affect Cd/Pb contents and health risks in oil of rapeseed grown on Cd/Pb-contaminated farmland[J]. Front. Environ. Sci. Eng., 2023, 17(7): 87-.
[12] Xingyue Qu, Peihe Zhai, Longqing Shi, Xingwei Qu, Ahmer Bilal, Jin Han, Xiaoge Yu. Distribution, enrichment mechanism and risk assessment for fluoride in groundwater: a case study of Mihe-Weihe River Basin, China[J]. Front. Environ. Sci. Eng., 2023, 17(6): 70-.
[13] Yujie Pan, Yalan Li, Hongxia Peng, Yiping Yang, Min Zeng, Yang Xie, Yao Lu, Hong Yuan. Relationship between groundwater cadmium and vicinity resident urine cadmium levels in the non-ferrous metal smelting area, China[J]. Front. Environ. Sci. Eng., 2023, 17(5): 56-.
[14] Qijun Zhang, Jiayuan Liu, Ning Wei, Congbo Song, Jianfei Peng, Lin Wu, Hongjun Mao. Identify the contribution of vehicle non-exhaust emissions: a single particle aerosol mass spectrometer test case at typical road environment[J]. Front. Environ. Sci. Eng., 2023, 17(5): 62-.
[15] Bin Wang, Liping Heng, Qian Sui, Zheng Peng, Xuezhi Xiao, Minghui Zheng, Jianxin Hu, Heidelore Fiedler, Damià Barceló, Gang Yu. Insight of chemical environmental risk and its management from the vinyl chloride accident[J]. Front. Environ. Sci. Eng., 2023, 17(4): 52-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed