Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2014, Vol. 8 Issue (1) : 69-78    https://doi.org/10.1007/s11783-013-0502-7
RESEARCH ARTICLE
In vitro agonistic and antagonistic endocrine disrupting effects of organic extracts from waste water of different treatment processes
Kaifeng RAO1, Na LI2(), Mei MA1, Zijian WANG1()
1. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 2. Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(233 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Effluents from wastewater treatment plant (WWTP) have been reported to have a broad spectrum of endocrine disrupting compounds (EDCs). The majority of studies have focused on the occurrence of estrogenic activity, while ignoring nuclear hormone receptors (NRs) pathways. In the present study, a battery of in vitro yeast bioassays and a cell bioassay, including antagonistic and agonistic effects on estrogen receptor (ER), androgen receptor (AR), progesterone receptor (PR), estrogen-related receptor (ERR) and aryl hydrocarbon receptor (AHR), were conducted to evaluate the removal efficiencies of EDCs by different treatment processes of a WWTP located in Beijing. Estrogenic, anti-estrogenic, anti- androgenic, anti-progesteronic, anti-ERR and the activation of AHR activities were detected in samples from all treatment processes and the receiving water. The concentration of estrogenic contaminants with estradiol (E2) equivalent concentrations ranged from 0.82 × 10-9 to 3.54 × 10-9 g E2-EQ·L-1. The concentration of anti-estrogenic contaminants with 4-hydroxytamoxifen (4-OHT) equivalent concentrations ranged from 1.24 × 10-6 to 2.36 × 10-6 g 4-OHT-EQ·L-1. The concentration of anti-androgenic contaminants ranged from 2.21 × 10-8 to 3.52 × 10-6 g flutamide-EQ·L-1. The concentration of anti-progesteronic contaminants ranged from 3.15 × 10-5 to 2.71 × 10-4 g RU486-EQ·L-1. The concentration of anti-ERR contaminants ranged from 7.09 × 10-5 to 6.50 × 10-4 g 4-OHT-EQ·L-1. The concentration of AHR activators ranged from 1.7 × 10-10 to 3.4 × 10-10 g TCDD-EQ·L-1. These processes including secondary clarifier, coagulation, as well as coal and sand filtration could eliminated 67.2% of estrogenic contaminants, 47.0% of anti-estrogenic contaminants, 98.3% of anti-androgenic contaminants, 88.4% of anti-progesteronic contaminants, 65.4% of anti-ERR contaminants and 46.9% of AHR activators. WWTP effluents contain multiple receptor disruptors may have very complex adverse effects on exposed organisms.

Keywords waste water      in vitro      recombinant yeast assay      ethoxyresorufin-O-deethylase (EROD)      receptor      endocrine     
Corresponding Author(s): LI Na,Email:lina@ihep.ac.cn; WANG Zijian,Email:wangzj@rcees.ac.cn   
Issue Date: 01 February 2014
 Cite this article:   
Kaifeng RAO,Zijian WANG,Na LI, et al. In vitro agonistic and antagonistic endocrine disrupting effects of organic extracts from waste water of different treatment processes[J]. Front Envir Sci Eng, 2014, 8(1): 69-78.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0502-7
https://academic.hep.com.cn/fese/EN/Y2014/V8/I1/69
bioassayreference materialendpointREC50/RIC50 (mol ·L-1)
two-hybrid ERa-LazE2estrogenic activity through ERa2.5 × 10-10a)
4-OHTanti-estrogenic activity through ERa in the presence of E21.2 × 10-6a)
two-hybrid AR-LazDHTandrogenic activity through AR1.3 × 10-8a)
hydroxyflutamideanti-androgenic activity through AR in the presence of DHT8.2 × 10-8a0
PR-Lazprogesteroneprogestagenic activity through PR5 × 10-10a0
RU486anti-progestagenic activity through PR in the presence of progesterone6.6 × 10-6a)
two-hybrid ERRγ-Laz4-OHTinhibition of the constitutive activity through ERRγ7.9 × 10-6a)
EROD with H4IIE rat hepatoma cells bioassayTCDDAHR activate activity10.8 × 10-12b)
Tab.1  Overview of the five in vitro bioassays used to determine the possible endocrine disrupting potency on eight different endpoints. ERa= estrogen receptor a, AR= androgen receptor, PR= progesterone receptor, ERRγ = estrogen-related receptorγ, AHR= aromatic hydrocarbon receptor, E2= 17β-Estradiol, RU486= mifepristone, 4-OHT= 4-hydroxytamoxifen, DHT= dihydrotestosteron, TCDD= 2,3,7,8-Tetrachlorodibenzo-p-dioxin REC50= the concentration inducing 50% of the maximum effect, RIC50= the concentration causing a 50% inhibition of the maximum effect
Fig.1  Estrogenic activities of water extracts determined by the ER yeast bioassay. The samples were collected from Gaobeidian waste water treatment plant and the sample’s estrogenic activity is represented as the percent induction activity relative to the maximum induced by 17β-Estradiol (E2, 5 × 10 mol·L-1). Values are presented as the average±standard error (n= 3). A= influent, B= effluent after secondary clarifier effluent, C= effluent after coagulate, D= effluent after sand filter treatment, E= Gaobeidian lake. 2.5, 5 and 10 mean the concentration folds of the original water
Fig.2  Anti-estrogenic activities of water extracts determined by the ER yeast bioassay. The samples were collected from Gaobeidian waste water treatment plant and the sample’s anti-estrogenic activity is represented as the percent inhibition activity relative to the maximum induced by 17β-Estradiol (E2, 5 × 10 mol·L). Values are presented as the average±standard error ( = 3). A= influent, B= effluent after secondary clarifier effluent, C= effluent after coagulate, D= effluent after sand filter treatment, E= Gaobeidian lake. 2.5, 5 and 10 mean the concentration folds of the original water
in vitro potencyprocesses
ABCDE
estrogenic activity g E2-EQ·L-13.54E-92.93E-92.52E-91.16E-98.17E-10
anti-estrogenic activity g 4-OHT- EQ·L-12.36E-61.42E-61.39E-61.25E-61.24E-6
androgenic activity g DHT-EQ·L-1NDNDNDNDND
anti-androgenic activity g flutamide-EQ·L-13.52E-065.549E-071.89E-076.14E-082.21E-08
progesteronic activity g progesterone-EQ·L-1NDNDNDNDND
anti-progesteronic activity g RU486- EQ·L-12.71E-42.07E-41.71E-43.15E-51.21E-4
ERRγ agonistic activityNDNDNDNDND
anti-ERR activity g 4-OHT-EQ·L-16.50E-43.54E-43.19E-42.25E-47.09E-5
AHR activate activity g TCDD-EQ·L-13.20E-103.40E-102.10E-101.70E-101.90E-10
Tab.2  Toxic equivalent of the effluents from A, B, C, D and E processes of five in vitro bioassays used to determine the possible endocrine disrupting potency . ERa= estrogen receptor a, AR= androgen receptor, PR= progesterone receptor, ERRγ = estrogen-related receptorγ, AHR= aromatic hydrocarbon receptor, E2= 17β-Estradiol, 4-OHT= 4-hydroxytamoxifen, DHT= dihydrotestosteron, TCDD= 2,3,7,8-Tetrachlorodibenzo-p-dioxin, A= influent, B= effluent after secondary clarifier effluent, C= effluent after coagulate, D= effluent after sand filter treatment, E= Gaobeidian lake
Fig.3  Anti-androgenic activities of water extracts determined by the AR yeast bioassay. The samples were collected from Gaobeidian waste water treatment plant and the sample’s anti-androgenic activity is represented as the percent inhibition activity relative to the maximum induced by dihydrotestosterone (DHT, 5 × 10 mol·L). Values are presented as the average±standard error ( = 3). A= influent, B= effluent after secondary clarifier effluent, C= effluent after coagulate, D= effluent after sand filter treatment, E= Gaobeidian lake. 2.5, 5 and 10 mean the concentration folds of the original water
Fig.4  Anti-progesteronic activities of water extracts determined by the PR yeast bioassay. The samples were collected from Gaobeidian waste water treatment plant and the sample’s anti-progesteronic activity is represented as the percent inhibition activity relative to the maximum induced by progesterone (1 × 10 mol·L). Values are presented as the average±standard error ( = 3). A= influent, B= effluent after secondary clarifier effluent, C= effluent after coagulate, D= effluent after sand filter treatment, E= Gaobeidian lake. 2.5, 5 and 10 mean the concentration folds of the original water
Fig.5  Anti-ERR activities of water extracts determined by the ERR yeast bioassay. The samples were collected from Gaobeidian waste water treatment plant. the sample’s anti-ERR activity is represented as the percent inhibition activity relative to the maximum induced by 4-hydroxytamoxifen (4-OHT, 1 × 10 mol·L). Values are presented as the average±standard error ( = 3). A= influent, B= effluent after secondary clarifier effluent, C= effluent after coagulate, D= effluent after sand filter treatment, E= Gaobeidian lake. 2.5, 5 and 10 mean the concentration folds of the original water. 2.5, 5 and 10 mean the concentration folds of the original water
Fig.6  AHR activate activities of water extracts determined by the EROD with H4IIE rat hepatoma cells bioassay. The sample’s AHR activate activity is represented as the percent induction activity relative to the maximum induced by 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, 5 ng·L). Values are presented as the average±standard error ( = 3).The samples were collected from Gaobeidian waste water treatment plant. Values are presented as the average±standard error ( = 3). A= influent, B= effluent after secondary clarifier effluent, C= effluent after coagulate, D= effluent after sand filter treatment, E= Gaobeidian lake. 2.5, 5 and 10 mean the concentration folds of the original water
1 Colborn T, vom Saal F S, Soto A M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environmental Health Perspectives , 1993, 101(5): 378-384
doi: 10.1289/ehp.93101378 pmid:8080506
2 Heberer T, Feldmann D, Redderoen K, Altmann H J. Zimmermann. Production of Drinking Water from Highly Contaminated Surface Waters: Removal of Organic, Inorganic, and Microbial Contaminants Applying Mobile Membrane Filtration Units. Weinheim: Wiley-VCH, 2002
3 Stackelberg P E, Furlong E T, Meyer M T, Zaugg S D, Henderson A K, Reissman D B. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. The Science of The Total Environment , 2004, 329(1-3): 99-113
doi: 10.1016/j.scitotenv.2004.03.015 pmid:15262161
4 Johnson A C, Williams R J, Simpson P, Kanda R. What difference might sewage treatment performance make to endocrine disruption in rivers? Environmental Pollution , 2007, 147(1): 194-202
doi: 10.1016/j.envpol.2006.08.032 pmid:17030080
5 Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Research , 2005, 39(19): 4797-4807
doi: 10.1016/j.watres.2005.09.015 pmid:16242170
6 Jobling S, Burn R W, Thorpe K, Williams R, Tyler C. Statistical modeling suggests that antiandrogens in effluents from wastewater treatment works contribute to widespread sexual disruption in fish living in English rivers. Environmental Health Perspectives , 2009, 117(5): 797-802
pmid:19479024
7 Kristensen T, Baatrup E, Bayley M. p,p′-DDE fails to reduce the competitive reproductive fitness in Nigerian male guppies. Ecotoxicology and Environmental Safety , 2006, 63(1): 148-157
doi: 10.1016/j.ecoenv.2005.03.010 pmid:16399166
8 Li J, Li N, Ma M, Giesy J P, Wang Z. In vitro profiling of the endocrine disrupting potency of organochlorine pesticides. Toxicology Letters , 2008, 183(1-3): 65-71
pmid:18992306
9 Li J, Ma M, Wang Z. In vitro profiling of endocrine disrupting effects of phenols. Toxicology In vitro: an international journal published in association with BIBRA , 2010, 24(1): 201-207
pmid:10.1016/j.tiv.2009.09.00819765641
10 Benfenati E, Barcelò D, Johnson I, Galassi S, Levsen K. Emerging organic contaminants in leachates from industrial waste landfills and industrial effluent. Trends in Analytical Chemistry , 2003, 22(10): 757-765
doi: 10.1016/S0165-9936(03)01004-5
11 Sánchez-Avila J, Bonet J, Velasco G, Lacorte S. Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a Municipal Wastewater Treatment Plant. The Science of The Total Environment, 2009, 407(13): 4157-4167
doi: 10.1016/j.scitotenv.2009.03.016 pmid:19362327
12 Overington J P, Al-Lazikani B, Hopkins A L. How many drug targets are there? Nature Reviews. Drug Discovery , 2006, 5(12): 993-996
doi: 10.1038/nrd2199 pmid:17139284
13 Kolodziej E P, Sedlak D L. Rangeland grazing as a source of steroid hormones to surface waters. Environmental Science & Technology , 2007, 41(10): 3514-3520
doi: 10.1021/es063050y pmid:17547172
14 Durhan E J, Lambright C S, Makynen E A, Lazorchak J, Hartig P C, Wilson V S, Gray L E, Ankley G T. Identification of metabolites of trenbolone acetate in androgenic runoff from a beef feedlot. Environmental Health Perspectives , 2005, 114(S-1): 65-68
doi: 10.1289/ehp.8055 pmid:16818248
15 Westerhoff P, Yoon Y, Snyder S, Wert E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science & Technology , 2005, 39(17): 6649-6663
doi: 10.1021/es0484799 pmid:16190224
16 Molinamolina J M, Hillenweck A, Jouanin I, Zalko D, Cravedi J P, Fernández M F, Pillon A, Nicolas J C, Olea N, Balaguer P. Steroid receptor profiling of vinclozolin and its primary metabolites. Toxicology and Applied Pharmacology , 2006, 216(1): 44-54
doi: 10.1016/j.taap.2006.04.005 pmid:16750840
17 Ma M, Li J, Wang Z. Assessing the detoxication efficiencies of wastewater treatment processes using a battery of bioassays/biomarkers. Archives of Environmental Contamination and Toxicology , 2005, 49(4): 480-487
doi: 10.1007/s00244-004-0204-z pmid:16205990
18 Tillitt D E, Ankley G T, Verbrugge D A, Giesy J P, Ludwig J P, Kubiak T J. H4IIE rat hepatoma cell bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents in colonial fish-eating waterbird eggs from the Great Lakes. Archives of Environmental Contamination and Toxicology , 1991, 21(1): 91-101
doi: 10.1007/BF01055562 pmid:1654867
19 Qiao M, Chen Y, Zhang Q, Huang S, Ma M, Wang C, Wang Z. Identification of Ah receptor agonists in sediment of Meiliang Bay, Taihu Lake, China. Environmental Science & Technology , 2006, 40(5): 1415-1419
doi: 10.1021/es051456p pmid:16568750
20 Shen C, Huang S, Wang Z, Qiao M, Tang X, Yu C, Shi D, Zhu Y, Shi J, Chen X, Setty K, Chen Y. Identification of ah receptor agonists in soil of E-waste recycling sites from Taizhou area in China. Environmental Science & Technology , 2008, 42(1): 49-55
doi: 10.1021/es071162z pmid:18350874
21 Gaido K W, Leonard L S, Lovell S, Gould J C, Baba? D, Portier C J, McDonnell D P. Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicology and Applied Pharmacology , 1997, 143(1): 205-212
doi: 10.1006/taap.1996.8069 pmid:9073609
22 Li J, Ma M, Wang Z J. A two-hybrid yeast assay to quantify the effects of xenobiotics on thyroid hormone-mediated gene expression. Environmental Toxicology and Chemistry/SETAC , 2008, 27(1): 159-167
doi: 10.1897/07-054.1 pmid:18092857
23 Wang J X, Xie P, Kettrup A, Schramm K W. Inhibition of progesterone receptor activity in recombinant yeast by soot from fossil fuel combustion emissions and air particulate materials. The Science of The Total Environment , 2005, 349(1-3): 120-128
doi: 10.1016/j.scitotenv.2005.01.019 pmid:16198674
24 Donato M T, Gómez-Lechón M J, Castell J V. A microassay for measuring cytochrome P450IA1 and P450IIB1 activities in intact human and rat hepatocytes cultured on 96-well plates. Analytical Biochemistry , 1993, 213(1): 29-33
doi: 10.1006/abio.1993.1381 pmid:8238878
25 Wang C, Wang Y, Kiefer F, Yediler A, Wang Z, Kettrup A. Ecotoxicological and chemical characterization of selected treatment process effluents of municipal sewage treatment plant. Ecotoxicology and Environmental Safety , 2003, 56(2): 211-217
doi: 10.1016/S0147-6513(02)00121-5 pmid:12927551
26 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry , 1976, 72(1-2): 248-254
doi: 10.1016/0003-2697(76)90527-3 pmid:942051
27 Wu Z W, Wang X J, Zhao F G, You L. The Emission Soot of Biomass Fuels Combustion as a Source of Endocrine Disrupters. Philadelphia, PA, ETATS-UNIS: Taylor&amp, Francis, 2002
28 Cargou?t M, Perdiz D, Mouatassim-Souali A, Tamisier-Karolak S, Levi Y. Assessment of river contamination by estrogenic compounds in Paris area (France). The Science of The Total Environment , 2004, 324(1-3): 55-66
doi: 10.1016/j.scitotenv.2003.10.035 pmid:15081696
29 Svenson A, Allard A S, Ek M. Removal of estrogenicity in Swedish municipal sewage treatment plants. Water Research , 2003, 37(18): 4433-4443
doi: 10.1016/S0043-1354(03)00395-6 pmid:14511714
30 Fawell J K, Sheahan D, James H A, Hurst M, Scott S. Oestrogens and oestrogenic activity in raw and treated water in Severn Trent Water. Water Research , 2001, 35(5): 1240-1244
doi: 10.1016/S0043-1354(00)00367-5 pmid:11268844
31 Desbrow C, Routledge E J, Brighty G C, Sumpter J P, Waldock M. Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environmental Science & Technology , 1998, 32(11): 1549-1558
doi: 10.1021/es9707973
32 Ying G G, Kookana R S, Ru Y J. Occurrence and fate of hormone steroids in the environment. Environment International , 2002, 28(6): 545-551
doi: 10.1016/S0160-4120(02)00075-2 pmid:12503920
33 Jobling S, Nolan M, Tyler C R, Brighty G, Sumpter J P. Widespread sexual disruption in wild fish. Environmental Science & Technology , 1998, 32(17): 2498-2506
doi: 10.1021/es9710870
34 Conroy O, Sáez A E, Quanrud D, Ela W, Arnold R G. Changes in estrogen/anti-estrogen activities in ponded secondary effluent. The Science of the total environment , 2007, 382(2-3): 311-323
doi: 10.1016/j.scitotenv.2007.04.033 pmid:17543371
35 van der Oost R, Beyer J, Vermeulen N P E. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology , 2003, 13(2): 57-149
doi: 10.1016/S1382-6689(02)00126-6 pmid:21782649
36 Vega-López A, Ramón-Gallegos E, Galar-Martínez M, Jiménez-Orozco F A, García-Latorre E, Domínguez-Lípez M L. Estrogenic, anti-estrogenic and cytotoxic effects elicited by water from the type localities of the endangered goodeid fish Girardinichthys viviparus. Comparative Biochemistry and Physiology-Part C: Toxicology & Pharmacology , 2007, 145(3): 394-403
doi: 10.1016/j.cbpc.2007.01.008 pmid:17317326
37 Sohoni P, Sumpter J P. Several environmental oestrogens are also anti-androgens. The Journal of endocrinology , 1998, 158(3): 327-339
doi: 10.1677/joe.0.1580327 pmid:9846162
38 Xu L C, Sun H, Chen J F, Bian Q, Qian J, Song L, Wang X R. Evaluation of androgen receptor transcriptional activities of bisphenol A, octylphenol and nonylphenol in vitro. Toxicology , 2005, 216(2-3): 197-203
doi: 10.1016/j.tox.2005.08.006 pmid:16169144
39 Kiparissis Y, Metcalfe T L, Balch G C, Metcalfe C D. Effects of the antiandrogens, vinclozolin and cyproterone acetate on gonadal development in the Japanese medaka (Oryzias latipes). Aquatic Toxicology (Amsterdam, Netherlands) , 2003, 63(4): 391-403
doi: 10.1016/S0166-445X(02)00189-3 pmid:12758004
40 Tollefsen K E, Harman C, Smith A, Thomas K V. Estrogen receptor (ER) agonists and androgen receptor (AR) antagonists in effluents from Norwegian North Sea oil production platforms. Marine Pollution Bulletin , 2007, 54(3): 277-283
doi: 10.1016/j.marpolbul.2006.07.012 pmid:17258235
41 Graham J D, Clarke C L. Physiological action of progesterone in target tissues. Endocrine Reviews , 1997, 18(4): 502-519
doi: 10.1210/er.18.4.502 pmid:9267762
42 Vonier P M, Crain D A, McLachlan J A, Guillette L J Jr, Arnold S F. Interaction of environmental chemicals with the estrogen and progesterone receptors from the oviduct of the American alligator. Environmental Health Perspectives , 1996, 104(12): 1318-1322
doi: 10.1289/ehp.961041318 pmid:9118873
43 Pickford D B, Morris I D. Effects of endocrine-disrupting contaminants on amphibian oogenesis: methoxychlor inhibits progesterone-induced maturation of Xenopus laevis oocytes in vitro. Environmental Health Perspectives , 1999, 107(4): 285-292
doi: 10.1289/ehp.99107285 pmid:10090707
44 Klotz D M, Ladlie B L, Vonier P M, McLachlan J A, Arnold S F. o,p’-DDT and its metabolites inhibit progesterone-dependent responses in yeast and human cells. Molecular and Cellular Endocrinology , 1997, 129(1): 63-71
doi: 10.1016/S0303-7207(96)04041-5 pmid:9175630
45 Wen D X, Xu Y F, Mais D E, Goldman M E, McDonnell D P. The A and B isoforms of the human progesterone receptor operate through distinct signaling pathways within target cells. Molecular and Cellular Biology , 1994, 14(12): 8356-8364
pmid:7969170
46 Horard B, Vanacker J M. Estrogen receptor-related receptors: orphan receptors desperately seeking a ligand. Journal of Molecular Endocrinology , 2003, 31(3): 349-357
doi: 10.1677/jme.0.0310349 pmid:14664699
47 Takayanagi S, Tokunaga T, Liu X, Okada H, Matsushima A, Shimohigashi Y. Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor gamma (ERRgamma) with high constitutive activity. Toxicology Letters , 2006, 167(2): 95-105
doi: 10.1016/j.toxlet.2006.08.012 pmid:17049190
48 Greschik H, Flaig R, Renaud J P, Moras D. Structural basis for the deactivation of the estrogen-related receptor gamma by diethylstilbestrol or 4-hydroxytamoxifen and determinants of selectivity. The Journal of Biological Chemistry, 2004, 279(32): 33639-33646
doi: 10.1074/jbc.M402195200 pmid:15161930
49 Tremblay G B, Bergeron D, Giguere V. 4-Hydroxytamoxifen is an isoform-specific inhibitor of orphan estrogen-receptor-related (ERR) nuclear receptors beta and gamma. Endocrinology , 2001, 142(10): 4572-4575
doi: 10.1210/en.142.10.4572 pmid:11564725
50 Ariazi E A, Clark G M, Mertz J E. Estrogen-related receptor alpha and estrogen-related receptor gamma associate with unfavorable and favorable biomarkers, respectively, in human breast cancer. Cancer Research , 2002, 62(22): 6510-6518
pmid:12438245
51 Aoki Y. Polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans as endocrine disrupters—what we have learned from Yusho disease. Environmental Research , 2001, 86(1): 2-11
doi: 10.1006/enrs.2001.4244 pmid:11386736
52 Díaz-Ferrero J, Rodríguez-Larena M C, Comellas L, Jiménez B.Bioanalytical methods applied to endocrine disrupting polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans: a review. TrAC Trends in Analytical Chemistry , 16(10): 563-573
53 Balaguer P, Joyeux A, Denison M S, Vincent R, Gillesby B E, Zacharewski T. Assessing the estrogenic and dioxin-like activities of chemicals and complex mixtures using in vitro recombinant receptor-reporter gene assays. Canadian Journal of Physiology and Pharmacology , 1996, 74(2): 216-222
pmid:8723035
54 Louiz I, Kinani S, Gouze M E, Ben-Attia M, Menif D, Bouchonnet S, Porcher J M, Ben-Hassine O K, A?t-A?ssa S. Monitoring of dioxin-like, estrogenic and anti-androgenic activities in sediments of the Bizerta lagoon (Tunisia) by means of in vitro cell-based bioassays: contribution of low concentrations of polynuclear aromatic hydrocarbons (PAHs). The Science of The Total Environment , 2008, 402(2-3): 318-329
doi: 10.1016/j.scitotenv.2008.05.005 pmid:18550148
55 Reungoat J, Macova M, Escher B I, Carswell S, Mueller J F, Keller J. Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. Water Research , 2010, 44(2): 625-637
doi: 10.1016/j.watres.2009.09.048 pmid:19863988
56 Macova M, Escher B I, Reungoat J, Carswell S, Chue K L, Keller J, Mueller J F. Monitoring the biological activity of micropollutants during advanced wastewater treatment with ozonation and activated carbon filtration. Water Research , 2010, 44(2): 477-492
doi: 10.1016/j.watres.2009.09.025 pmid:19854465
57 Blanchard M, Teil M J, Ollivon D, Legenti L, Chevreuil M. Polycyclic aromatic hydrocarbons and polychlorobiphenyls in wastewaters and sewage sludges from the Paris area (France). Environmental Research , 2004, 95(2): 184-197
doi: 10.1016/j.envres.2003.07.003 pmid:15147924
58 Busetti F, Heitz A, Cuomo M, Badoer S, Traverso P. Determination of sixteen polycyclic aromatic hydrocarbons in aqueous and solid samples from an Italian wastewater treatment plant. Journal of Chromatography. A , 2006, 1102(1-2): 104-115
doi: 10.1016/j.chroma.2005.10.013 pmid:16256127
59 Smirnov A D, Schecter A, P?pke O, Beljak A A. Conclusions from Ufa, Russia, drinking water dioxin cleanup experiments involving different treatment technologies. Chemosphere , 1996, 32(3): 479-489
doi: 10.1016/0045-6535(95)00235-9 pmid:8907225
60 Ternes T A, Meisenheimer M, McDowell D, Sacher F, Brauch H J, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N. Removal of pharmaceuticals during drinking water treatment. Environmental Science & Technology , 2002, 36(17): 3855-3863
doi: 10.1021/es015757k pmid:12322761
61 Nelson J, Bishay F, van Roodselaar A, Ikonomou M, Law F C. The use of in vitro bioassays to quantify endocrine disrupting chemicals in municipal wastewater treatment plant effluents. The Science of The Total Environment , 2007, 374(1): 80-90
doi: 10.1016/j.scitotenv.2006.11.031 pmid:17257656
62 Servos M R, Bennie D T, Burnison B K, Jurkovic A, McInnis R, Neheli T, Schnell A, Seto P, Smyth S A, Ternes T A. Distribution of estrogens, 17β-estradiol and estrone, in Canadian municipal wastewater treatment plants. The Science of The Total Environment , 2005, 336(1-3): 155-170
doi: 10.1016/j.scitotenv.2004.05.025 pmid:15589256
63 Kraus W L, Weis K E, Katzenellenbogen B S. Inhibitory cross-talk between steroid hormone receptors: differential targeting of estrogen receptor in the repression of its transcriptional activity by agonist- and antagonist-occupied progestin receptors. Molecular and Cellular Biology , 1995, 15(4): 1847-1857
pmid:7891678
64 Ohtake F, Fujii-Kuriyama Y, Kawajiri K, Kato S. Cross-talk of dioxin and estrogen receptor signals through the ubiquitin system. The Journal of Steroid Biochemistry and Molecular Biology , 2011, 127(1-2): 102-107
doi: 10.1016/j.jsbmb.2011.03.007 pmid:21397018
65 Tran D Q, Klotz D M, Ladlie B L, Ide C F, McLachlan J A, Arnold S F. Inhibition of progesterone receptor activity in yeast by synthetic chemicals. Biochemical and Biophysical Research Communications , 1996, 229(2): 518-523
doi: 10.1006/bbrc.1996.1836 pmid:8954930
[1] Qiang Li, Xiong Xu, Yaoyao Fang, Ruiyang Xiao, Donghong Wang, Wenjue Zhong. The temporal changes of the concentration level of typical toxic organics in the river sediments around Beijing[J]. Front. Environ. Sci. Eng., 2018, 12(6): 8-.
[2] Cesunica E. Ivey, Heather A. Holmes, Yongtao Hu, James A. Mulholland, Armistead G. Russell. A method for quantifying bias in modeled concentrations and source impacts for secondary particulate matter[J]. Front. Environ. Sci. Eng., 2016, 10(5): 14-.
[3] Yong YU,Laosheng WU. Determination and occurrence of endocrine disrupting compounds, pharmaceuticals and personal care products in fish (Morone saxatilis)[J]. Front. Environ. Sci. Eng., 2015, 9(3): 475-481.
[4] LIU Cao,XU Yiping,MA Mei,HUANG Bingbin,WU Jingdong,MENG Qingyi,WANG Zijian,GEARHEART Robert Alan. Evaluation of endocrine disruption and dioxin-like effects of organic extracts from sewage sludge in autumn in Beijing, China[J]. Front.Environ.Sci.Eng., 2014, 8(3): 433-440.
[5] Yan SUN, Huang HUANG, Ying SUN, Chao WANG, Xiaolei SHI, Hongying HU, Takashi KAMEYA, Koichi FUJIE. Occurrence of estrogenic endocrine disrupting chemicals concern in sewage plant effluent[J]. Front Envir Sci Eng, 2014, 8(1): 18-26.
[6] Xiaohong GUAN, Di HE, Jun MA, Guanghao CHEN. Application of permanganate in the oxidation of micropollutants: a mini review[J]. Front Envir Sci Eng Chin, 2010, 4(4): 405-413.
[7] XU Bin, GAO Naiyun, RUI Min, WANG Hong, WU Haihui. Degradation of endocrine disruptor bisphenol A in drinking water by ozone oxidation[J]. Front.Environ.Sci.Eng., 2007, 1(3): 350-356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed