Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    0, Vol. Issue () : 815-826    https://doi.org/10.1007/s11783-013-0503-6
RESEARCH ARTICLE
Size-resolved aerosol ionic composition and secondary formation at Mount Heng in South Central China
Xinfeng WANG1, Wenxing WANG1(), Likun XUE2, Xiaomei GAO1, Wei NIE1, Yangchun YU1, Yang ZHOU1, Lingxiao YANG1, Qingzhu ZHANG1, Tao WANG2
1. Environment Research Institute, Shandong University, Jinan 250100, China; 2. Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
 Download: PDF(650 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To understand the size-resolved aerosol ionic composition and the factors influencing secondary aerosol formation in the upper boundary layer in South Central China, size-segregated aerosol samples were collected using a micro-orifice uniform deposit impactor (MOUDI) in spring 2009 at the summit of Mount Heng (1269 m asl), followed by subsequent laboratory analyses of 13 inorganic and organic water-soluble ions. During non-dust-storm periods, the average PM1.8 concentration was 41.8 μg·m-3, contributing to 55% of the PM10. Sulfates, nitrates, and ammonium, the dominant ions in the fine particles, amounted to 46.8% of the PM1.8. Compared with Mount Tai in the North China Plain, the concentrations of both fine and coarse particles and the ions contained therein were substantially lower. When the air masses from Southeast Asia prevailed, intensive biomass burning there led to elevated concentrations of sulfates, nitrates, ammonium, potassium, and chloride in the fine particles at Mount Heng. The air masses originating from the north Gobi brought heavy dust storms that resulted in the remarkable production of sulfates, ammonium, methane sulfonic acid, and oxalates in the coarse particles. Generally, the sulfates were primarily produced in the form of (NH4)2SO4 in the droplet mode via heterogeneous aqueous reactions. Only approximately one-third of the nitrates were distributed in the fine mode, and high humidity facilitated the secondary formation of fine nitrates. The heterogeneous formation of coarse nitrates and ammonium on dry alkaline dust surfaces was found to be less efficient than that on the coarse particles during non-dust-storm periods.

Keywords aerosol water-soluble ions      size distributions      secondary formation      dust storm      Mount Heng     
Corresponding Author(s): WANG Wenxing,Email:wenxwang@hotmail.com   
Issue Date: 01 December 2013
 Cite this article:   
Xinfeng WANG,Wenxing WANG,Likun XUE, et al. Size-resolved aerosol ionic composition and secondary formation at Mount Heng in South Central China[J]. Front Envir Sci Eng, 0, (): 815-826.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0503-6
https://academic.hep.com.cn/fese/EN/Y0/V/I/815
Fig.1  Map showing the location of the measurement site, the mean five-day backward trajectory clusters, and the Asia emission inventory of PM in 2006 []
Fig.2  Time series of size-resolved aerosol mass concentrations in PM and the corresponding temperature, relative humidity and air mass category in spring at Mount Heng
Mount Heng (2009)Mount Tai (2007)
NDS (n = 19)DS (n = 7)NDS (n = 10)DS (n = 1)
PM1.8PM1.8-10PM1.8/PM10PM1.8PM1.8-10PM1.8/PM10PM1.8PM1.8-10PM1.8/PM10PM1.8PM1.8-10PM1.8/PM10
PM41.834.00.5547.2311.90.1365.453.10.5590.6475.90.16
SO42-12.550.840.949.455.590.6315.313.760.808.6016.980.34
NO3-1.663.170.341.078.640.118.124.370.652.057.040.23
NH4+5.340.200.963.601.000.787.870.880.901.490.760.66
K+0.630.050.930.510.340.601.240.230.841.180.620.66
Na+0.210.400.340.210.890.190.320.250.560.704.590.13
Cl-0.160.400.290.090.980.080.900.400.690.541.740.24
Ca2+0.130.960.120.768.470.080.542.870.163.2216.570.16
Mg2+0.040.120.260.100.530.150.150.270.370.381.020.27
F-0.040.170.190.020.900.030.040.140.220.050.200.19
CHO2-0.120.080.610.060.100.35
C2H3O2-0.080.070.530.050.090.36
CH3SO3-0.050.000.980.020.010.72
C2O42-0.440.090.820.140.380.26
Tab.1  Mean aerosol and ion mass concentrations in PM and PM and the PM/PM ratios for the NDS and DS days in spring 2009 at Mount Heng and in spring 2007 at Mount Tai (μg·m)
air massSO2 /ppbvNO2 /ppbvO3 /ppbvtemperature /°CRH /%
NG4.401.2867.7313.7170.89
NWC3.050.7465.4715.3671.55
NEC3.131.1372.1516.8172.00
PRD3.241.0066.4519.0984.11
SEA0.5016.6790.67
Tab.2  Mean concentrations of SO, NO and O together with the mean ambient temperature and relative humidity for five types of air masses
Fig.3  Mean mass size distributions of aerosols and inorganic and organic water-soluble ions under five types of air masses in spring at Mount Heng: (a) PM; (b) ; (c) ; (d) ; (e) Cl; (f) Na; (g) K; (h) Ca; (i) Mg; (j) F; (k) ; (l) ; (m) ; (n)
Fig.4  Linear regression curves of (a) ammonium vs. sulfate (molar concentration) and (b) sulfate vs. particulate matter (mass concentration) in size bins in the fine mode
Fig.5  Linear regression curves of (a) sulfate vs. particulate matter and (b) ammonium vs. particulate matter in size bins in the coarse mode and (c) the molar ratio of ammonium to sulfate in different size bins for the DS and NDS periods
Fig.6  Linear regression curves of nitrate vs. particulate matter in size bins in the coarse mode for the DS and NDS periods
Fig.7  Linear regression curves of (a) nitrate vs. sodium and (b) chloride vs. sodium in size bins in the coarse mode during the non-dust-storm periods
1 Yang F, Tan J, Zhao Q, Du Z, He K, Ma Y, Duan F, Chen G, Zhao Q. Characteristics of PM2.5 speciation in representative megacities and across China. Atmospheric Chemistry and Physics , 2011, 11(11): 5207–5219
doi: 10.5194/acp-11-5207-2011
2 Pitchford M, Maim W, Schichtel B, Kumar N, Lowenthal D, Hand J. Revised algorithm for estimating light extinction from IMPROVE particle speciation data. Journal of the Air & Waste Management Association , 2007, 57(11): 1326–1336
doi: 10.3155/1047-3289.57.11.1326 pmid:18069456
3 Topping D O, McFiggans G. Tight coupling of particle size, number and composition in atmospheric cloud droplet activation. Atmospheric Chemistry and Physics , 2012, 12(7): 3253–3260
doi: 10.5194/acp-12-3253-2012
4 Tang A, Zhuang G, Wang Y, Yuan H, Sun Y. The chemistry of precipitation and its relation to aerosol in Beijing. Atmospheric Environment , 2005, 39(19): 3397–3406
doi: 10.1016/j.atmosenv.2005.02.001
5 Salma I, Balashazy I, Winkler-Heil R, Hofmann W, Zaray G. Effect of particle mass size distribution on the deposition of aerosols in the human respiratory system. Journal of Aerosol Science , 2002, 33(1): 119–132
doi: 10.1016/S0021-8502(01)00154-9
6 Cheng S, Yang L, Zhou X, Wang Z, Zhou Y, Gao X, Nie W, Wang X, Xu P, Wang W. Evaluating PM2.5 ionic components and source apportionment in Jinan, China from 2004 to 2008 using trajectory statistical methods. Journal of Environmental Monitoring , 2011, 13(6): 1662–1671
doi: 10.1039/c0em00756k pmid:21505680
7 Zhang M, Chen J M, Wang T, Cheng T T, Lin L, Bhatia R S, Hanvey M.Chemical characterization of aerosols over the Atlantic Ocean and the Pacific Ocean during two cruises in 2007 and 2008. Journal of Geophysical Research , 2010, 115(D22): D22302,
doi: 10.1029/2010JD014246
8 Mori I, Nishikawa M, Tanimura T, Quan H. Change in size distribution and chemical composition of kosa (Asian dust) aerosol during long-range transport. Atmospheric Environment , 2003, 37(30): 4253–4263
doi: 10.1016/S1352-2310(03)00535-1
9 Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. 2nd ed. New York: John Willey & Sons, Inc., 2006
10 Liu S, Hu M, Slanina S, He L Y, Niu Y W, Bruegemann E, Gnauk T, Herrmann H. Size distribution and source analysis of ionic compositions of aerosols in polluted periods at Xinken in Pearl River Delta (PRD) of China. Atmospheric Environment , 2008, 42(25): 6284–6295
doi: 10.1016/j.atmosenv.2007.12.035
11 Horemans B, Krata A, Buczynska A J, Dirtu A C, van Meel K, van Grieken R, Bencs L. Major ionic species in size-segregated aerosols and associated gaseous pollutants at a coastal site on the Belgian North Sea. Journal of Environmental Monitoring , 2009, 11(3): 670–677
doi: 10.1039/b815059a pmid:19280046
12 Guo S, Hu M, Wang Z B, Slanina J, Zhao Y L. Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing: implication of regional secondary formation. Atmospheric Chemistry and Physics , 2010, 10(3): 947–959
doi: 10.5194/acp-10-947-2010
13 Li J, Wang G, Zhou B, Cheng C, Cao J, Shen Z, An Z. Chemical composition and size distribution of wintertime aerosols in the atmosphere of Mt. Hua in central China. Atmospheric Environment , 2011, 45(6): 1251–1258
doi: 10.1016/j.atmosenv.2010.12.009
14 Cheng S, Yang L, Zhou X, Xue L, Gao X, Zhou Y, Wang W. Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China. Atmospheric Environment , 2011, 45(27): 4631–4640
doi: 10.1016/j.atmosenv.2011.05.057
15 Wang G, Li J, Cheng C, Hu S, Xie M, Gao S, Zhou B, Dai W, Cao J, An Z. Observation of atmospheric aerosols at Mt. Hua and Mt. Tai in central and east China during spring 2009 - Part 1: EC, OC and inorganic ions. Atmospheric Chemistry and Physics , 2011, 11(9): 4221–4235
doi: 10.5194/acp-11-4221-2011
16 Zhang Q, Jimenez J L, Canagaratna M R, Allan J D, Coe H, Ulbrich I, Alfarra M R, Takami A, Middlebrook A M, Sun Y L, Dzepina K, Dunlea E, Docherty K, DeCarlo P F, Salcedo D, Onasch T, Jayne J T, Miyoshi T, Shimono A, Hatakeyama S, Takegawa N, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Williams P, Bower K, Bahreini R, Cottrell L, Griffin R J, Rautiainen J, Sun J Y, Zhang Y M, Worsnop D R. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophysical Research Letters, 2007, 34(13): L13801,
doi: 10.1029/2007GL029979
17 Yao X H, Lau A P S, Fang M, Chan C K, Hu M. Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China: 1-inorganic ions. Atmospheric Environment , 2003, 37(21): 2991–3000
doi: 10.1016/S1352-2310(03)00255-3
18 Hu M, Zhao Y L, He L Y, Huang X F, Tang X Y, Yao X H, Chan C K. Mass size distribution of Beijing particulate matters and its inorganic water-soluble ions in winter and summer. Environmental Sciences , 2005, 26(4): 1–6 (in Chinease)
pmid:16212158
19 Zhao P, Zhu T, Liang B, Hu M, Kang L, Gong J. Characteristics of mass distributions of aerosol particle and its inorganic water-soluble ions in summer over a suburb farmland in Beijing. Frontiers of Environmental Science & Engineering in China , 2007, 1(2): 159–165
doi: 10.1007/s11783-007-0028-y
20 Huang X F, Yu J, He L Y, Yuan Z.Water-soluble organic carbon and oxalate in aerosols at a coastal urban site in China: size distribution characteristics, sources and formation mechanisms. Journal of Geophysical Research , 2006, 111(D22): D22212,
doi: 10.1029/2006JD007408
21 Gao X, Wang T, Zhou Y, Xue L, Zhang Q, Wang X, Nie W, Wang W, Wang D. Size distribution of atmospheric particles and water soluble inorganic ions in spring and summer at Mount Tai. Environmental Chemistry , 2011, 30(3): 686–692
22 Ding Y. Monsoons over China. Norwell: Kluwer Acad., 1994
23 Fuelberg H E, Kiley C M, Hannan J R, Westberg D J, Avery M A, Newell R E. Meteorological conditions and transport pathways during the Transport and Chemical Evolution over the Pacific (TRACE-P) experiment. Journal of Geophysical Research , 2003, 108(D20): 8782,
doi: 10.1029/2002JD003092
24 Zhou S, Wang Z, Gao R, Xue L, Yuan C, Wang T, Gao X, Wang X, Nie W, Xu Z, Zhang Q, Wang W. Formation of secondary organic carbon and long-range transport of carbonaceous aerosols at Mount Heng in South China. Atmospheric Environment , 2012, 63(2012): 203–212
doi: 10.1016/j.atmosenv.2012.09.021
25 Zhang Q, Streets D G, Carmichael G R, He K, Huo H, Kannari A, Klimont Z, Park I, Reddy S, Fu J, Chen D, Duan L, Lei Y, Wang L T, Yao Z L. Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics , 2009, 9(14): 5131–5153
doi: 10.5194/acp-9-5131-2009
26 Zhang M, Wang S, Wu F, Yuan X, Zhang Y. Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmospheric Research , 2007, 84(4): 311–322
doi: 10.1016/j.atmosres.2006.09.003
27 Sun M, Wang Y, Wang T, Fan S, Wang W, Li P, Guo J, Li Y.Cloud and the corresponding precipitation chemistry in south China: water-soluble components and pollution transport. Journal of Geophysical Research , 2010, 115(D22): D22303,
doi: 10.1029/2010JD014315
28 Draxler R R, Rolph G D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory). Silver Spring, MD: NOAA Air Resources Laboratory , 2012. Available online at http://ready.arl.noaa.gov/HYSPLIT.php (accessed September 26, 2012)
29 Gao X, Xue L, Wang X, Wang T, Yuan C, Gao R, Zhou Y, Nie W, Zhang Q, Wang W. Aerosol ionic components at Mt. Heng in central southern China: abundances, size distribution, and impacts of long-range transport. Science of the Total Environment , 2012, 433(433): 498–506
doi: 10.1016/j.scitotenv.2012.06.095 pmid:22824078
30 Liu X, Van Espen P, Adams F, Cafmeyer J, Maenhaut W. Biomass burning in Southern Africa: individual particle characterization of atmospheric aerosols and savanna fire samples. Journal of Atmospheric Chemistry , 2000, 36(2): 135–155
doi: 10.1023/A:1006387031927
31 Mather T, Allen A, Oppenheimer C, Pyle D, McGonigle A. Size-resolved characterisation of soluble ions in the particles in the tropospheric plume of Masaya volcano, Nicaragua: Origins and plume processing. Journal of Atmospheric Chemistry , 2003, 46(3): 207–237
doi: 10.1023/A:1026327502060
32 Yao X H, Zhang L.Sulfate formation in atmospheric ultrafine particles at Canadian inland and coastal rural environments. Journal of Geophysical Research , 2011, 116(D10): D10202,
doi: 10.1029/2010JD015315
33 Wang X, Wang W, Yang L, Gao X, Nie W, Yu Y, Xu P, Zhou Y, Wang Z. The secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditions. Atmospheric Environment , 2012, 63(2012): 68–76
doi: 10.1016/j.atmosenv.2012.09.029
34 Wang X, Zhang Y, Chen H, Yang X, Chen J, Geng F. Particulate nitrate formation in a highly polluted urban area: a case study by single-particle mass spectrometry in Shanghai. Environmental Science & Technology , 2009, 43(9): 3061–3066
doi: 10.1021/es8020155 pmid:19534114
35 Ying Q. Physical and chemical processes of wintertime secondary nitrate aerosol formation. Frontiers of Environmental Science & Engineering in China , 2011, 5(3): 348–361
doi: 10.1007/s11783-011-0343-1
[1] Can DONG, Lingxiao YANG, Chao YAN, Qi YUAN, Yangchun YU, Wenxing WANG. Particle size distributions, PM2.5 concentrations and water-soluble inorganic ions in different public indoor environments: a case study in Jinan, China[J]. Front Envir Sci Eng, 2013, 7(1): 55-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed