Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (3) : 302-325    https://doi.org/10.1007/s11783-013-0511-6
FEATURE ARTICLE
The abatement of major pollutants in air and water by environmental catalysis
Junhua LI1(), Hong HE2, Chun HU2, Jincai ZHAO3()
1. Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing 100084, China; 2. Chinese Academy of Science, Ecoenvironmental Science Research Center, Beijing 100085, China; 3. Chinese Academy of Sciences, Institute of Chemistry, Beijing 100190, China
 Download: PDF(448 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This review reports the research progress in the abatement of major pollutants in air and water by environmental catalysis. For air pollution control, the selective catalytic reduction of NOx (SCR) by ammonia and hydrocarbons on metal oxide and zeolite catalysts are reviewed and discussed, as is the removal of Hg from flue gas by catalysis. The oxidation of Volatile organic compounds (VOCs) by photo- and thermal- catalysis for indoor air quality improvement is reviewed. For wastewater treatment, the catalytic elimination of inorganic and organic pollutants in wastewater is presented. In addition, the mechanism for the procedure of abatement of air and water pollutants by catalysis is discussed in this review. Finally, a research orientation on environment catalysis for the treatment of air pollutants and wastewater is proposed.

Keywords air pollution control      wastewater treatment      DeNOx      selective catalytic reduction (SCR)      Volatile organic compounds (VOCs)      environmental catalysis     
Corresponding Author(s): LI Junhua,Email:lijunhua@tsinhua.edu.cn; ZHAO Jincai,Email:jczhao@iccas.ac.cn   
Issue Date: 01 June 2013
 Cite this article:   
Junhua LI,Hong HE,Chun HU, et al. The abatement of major pollutants in air and water by environmental catalysis[J]. Front Envir Sci Eng, 2013, 7(3): 302-325.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0511-6
https://academic.hep.com.cn/fese/EN/Y2013/V7/I3/302
Fig.1  Mechanistic scheme of the catalytic cycle of the SCR reaction over the VO/TiO catalyst in the presence of oxygen []
Fig.2  Mechanism of NH-SCR of NO over Mn-Fe catalysts []
Fig.3  Scheme of the proposed mechanism of the standard SCR reaction on Fe/HBEA zeolite []
Fig.4  Schematic diagram of the Fe(III)-initiated Fenton-like chain reaction []
Fig.5  Proposed Fenton-like mechanism of Fe(III)-resin under visible light irradiation []
Fig.6  Proposed photodegradation mechanisms of organic pollutants in the aqueous HO/FePR system under visible light irradiation []
Fig.7  Suggested reaction mechanism during catalytic ozonation with AlO []
Fig.8  Schematic showing the transformation of , , , and trichloroethylene (TCE) on a Pd-M catalyst particle (M= Cu, In, Re) []
1 Busca G, Lietti L, Ramis G, Berti F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Applied Catalysis B: Environmental , 1998, 18(1–2): 1–36
doi: 10.1016/S0926-3373(98)00040-X
2 Amiridis M D, Wachs I E, Deo G, Jehng J M, Kim D S. Reactivity of V2O5 catalysts for the selective catalytic reduction of NO by NH3: Influence of vanadia loading, H2O, and SO2. Journal of Catalysis , 1996, 161(1): 247–253
doi: 10.1006/jcat.1996.0182
3 Liu F D, He H, Zhang C B. Novel iron titanate catalyst for the selective catalytic reduction of NO with NH3 in the medium temperature range. Chemical Communications , 2008, 17(17): 2043–2045
doi: 10.1039/b800143j pmid:18536815
4 Ma L, Li J H, Ke R, Fu L X. Catalytic Performance, Characterization, and Mechanism Study of Fe2(SO4)3/TiO2 Catalyst for Selective Catalytic Reduction of NOx by Ammonia. Journal of Physical Chemistry C , 2011, 115(15): 7603–7612
doi: 10.1021/jp200488p
5 Singoredjo L, Korver R, Kapteijn F, Moulijn J. Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric-oxide with ammonia. Applied Catalysis B: Environmental , 1992, 1(4): 297–316
doi: 10.1016/0926-3373(92)80055-5
6 Shan W, Liu F, He H, Shi X, Zhang C. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental , 2012, 115-116: 100–116
doi: 10.1016/j.apcatb.2011.12.019
7 Liu C X, Chen L, Li J H, Ma L, Arandiyan H, Du Y, Xu J Y, Hao J M. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3. Environmental Science & Technology , 2012, 46(11): 6182–6189
doi: 10.1021/es3001773 pmid:22548347
8 Chen L, Li J H, Ge M F. DRIFT study on cerium-tungsten/titania catalyst for selective catalytic reduction of NOx with NH3. Environmental Science & Technology , 2010, 44(24): 9590–9596
doi: 10.1021/es102692b pmid:21087047
9 Pasel J, Kassner P, Montanari B, Gazzano M, Vaccari A, Makowski W, Lojewski T, Dziembaj R, Papp H. Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3. Applied Catalysis B: Environmental , 1998, 18(3-4): 199–213
doi: 10.1016/S0926-3373(98)00033-2
10 Shan W, Liu F, He H, Shi X, Zhang C. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental , 2012, 115-116: 100–106
doi: 10.1016/j.apcatb.2011.12.019
11 Tops?e N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy. Science , 1994, 265(5176): 1217–1219
doi: 10.1126/science.265.5176.1217 pmid:17787589
12 Chen L, Li J H, Ge M F. Promotional Effect of Ce-doped V2O5-WO3/TiO2 with Low Vanadium Loadings for Selective Catalytic Reduction of NOx by NH3. Journal of Physical Chemistry C , 2009, 113(50): 21177–21184
doi: 10.1021/jp907109e
13 Li J H, Chang H Z, Ma L, Hao J M, Yang R T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review. Catalysis Today , 2011, 175(1): 147–156
doi: 10.1016/j.cattod.2011.03.034
14 Yang S J, Li J H, Wang C Z, Chen J H, Ma L, Chang H Z, Chen L, Peng Y, Yan N Q. Fe-Ti spinel for the selective catalytic reduction of NO with NH3: Mechanism and structure-activity relationship. Applied Catalysis B: Environmental , 2012, 117: 73–80
doi: 10.1016/j.apcatb.2012.01.001
15 Si Z, Weng D, Wu X, Li J, Li G. Structure, acidity and activity of CuOx/WOx-ZrO2 catalyst for selective catalytic reduction of NO by NH3. Journal of Catalysis , 2010, 271(1): 43–51
doi: 10.1016/j.jcat.2010.01.025
16 Li Y, Cheng H, Li D, Qin Y, Xie Y, Wang S. WO3/CeO2-ZrO2, a promising catalyst for selective catalytic reduction (SCR) of NOx with NH3 in diesel exhaust. Chemical Communications , 2008, (12): 1470–1472
doi: 10.1039/b717873e pmid:18338059
17 Xu W, Yu Y, Zhang C, He H. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst. Catalysis Communications , 2008, 9(6): 1453–1457
doi: 10.1016/j.catcom.2007.12.012
18 Gao X, Jiang Y, Fu Y, Zhong Y, Luo Z, Cen K. Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3. Catalysis Communications , 2010, 11(5): 465–469
doi: 10.1016/j.catcom.2009.11.024
19 Shan W, Liu F, He H, Shi X, Zhang C. Novel cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NO(x) with NH3. Chemical Communications , 2011, 47(28): 8046–8048
doi: 10.1039/c1cc12168e pmid:21655619
20 Chen L, Li J H, Ablikim J D, Wang J, Chand H Z, Ma L, Ge M F, Arandiyan H. CeO2-WO3 mixed oxides for the selective catalytic reduction of NOx by NH3 over a wide temperature range. Catalysis Letters , 2011, 141(12): 1859–1864
doi: 10.1007/s10562-011-0701-4
21 Dai Y, Li J H, Peng Y, Tang X F. Effects of MnO2 crystal structure and surface property on the NH3-SCR reaction at low temperature. Acta Physico-Chimica Sinica , 2012, 28: 1771–1776
22 Kijlstra W S, Biervliet M, Poels E K, Bliek A. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental , 1998, 16(4): 327–337
doi: 10.1016/S0926-3373(97)00089-1
23 Tang X, Hao J, Xu W, Li J. Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods. Catalysis Communications , 2007, 8(3): 329–334
doi: 10.1016/j.catcom.2006.06.025
24 Cen W, Liu Y, Wu Z, Wang H, Weng X. A theoretic insight into the catalytic activity promotion of CeO2 surfaces by Mn doping. Physical Chemistry Chemical Physics , 2012, 14(16): 5769–5777
doi: 10.1039/c2cp00061j pmid:22434262
25 Qi G, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst. Journal of Catalysis , 2003, 217(2): 434–441
26 Chang H Z, Li J H, Chen X Y, Ma L, Yang S J, Schwank J W, Hao J M. Effect of Sn on MnOx-CeO2 catalyst for SCR of NOx by ammonia: Enhancement of activity and remarkable resistance to SO2. Catalysis Communications , 2012, 27(5): 54–57
doi: 10.1016/j.catcom.2012.06.022
27 Qi G S, Yang R T, Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental , 2004, 51(2): 93–106
doi: 10.1016/j.apcatb.2004.01.023
28 Casapu M, Krocher O, Elsener M. Screening of doped MnOx-CeO2 catalysts for low-templerature NO-SCR. Applied Catalysis B: Environmental , 2009, 88(3-4): 413–419
doi: 10.1016/j.apcatb.2008.10.014
29 Wang S B, Lu G Q. Effects of acidic treatments on the pore and surface properties of Ni catalyst supported on activated carbon. Carbon , 1998, 36(3): 283–292
doi: 10.1016/S0008-6223(97)00187-5
30 Kijlstra W S, Brands D S, Poels E K, Bliek A. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3.1. Adsorption and desorption of the single reaction components. Journal of Catalysis , 1997, 171(1): 208–218
doi: 10.1006/jcat.1997.1788
31 Eigenmann F, Maciejewski M, Baiker A. Selective reduction of NO by NH3 over manganese-cerium mixed oxides: relation between adsorption, redox and catalytic behavior. Applied Catalysis B: Environmental , 2006, 62(3-4): 311–318
doi: 10.1016/j.apcatb.2005.08.005
32 Yang S J, Wang C Z, Li J H, Yan N Q, Ma L, Chang H Z. Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: Performance, mechanism and kinetic study. Applied Catalysis B: Environmental , 2011, 110: 71–80
doi: 10.1016/j.apcatb.2011.08.027
33 Dunn J P, Stenger H G Jr, Wachs I E. Oxidation of SO2 over supported metal oxide catalysts. Journal of Catalysis , 1999, 181(2): 233–243
doi: 10.1006/jcat.1998.2305
34 Kobayashi M, Hagi M. V2O5-WO3/TiO2-SiO2SO2- catalysts: Influence of active components and supports on activities in the selective catalytic reduction of NO by NH3 and in the oxidation of SO2. Applied Catalysis B: Environmental , 2006, 63(1-2): 104–113
doi: 10.1016/j.apcatb.2005.09.015
35 Xu W, He H, Yu Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3. Journal of Physical Chemistry C , 2009, 113(11): 4426–4432
doi: 10.1021/jp8088148
37 Du X, Gao X, Cui L, Fu Y, Luo Z, Cen K. Investigation of the effect of Cu addition on the SO2-resistance of a Ce-Ti oxide catalyst for selective catalytic reduction of NO with NH3. Fuel , 2012, 92(1): 49–55
doi: 10.1016/j.fuel.2011.08.014
38 Tang X, Hao J, Yi H, Li J. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts. Catalysis Today , 2007, 126(3-4): 406–411
doi: 10.1016/j.cattod.2007.06.013
39 Yang S J, Wang C Z, Chen J H, Peng Y, Ma L, Chang H Z, Chen L, Liu C X, Xu J Y, Li J H, Yan N Q. A novel magnetic Fe-Ti-V spinel catalyst for the selective catalytic reduction of NO with NH3 in a broad temperature range. Catalysis Science & Technology , 2012, 2(5): 915–917
doi: 10.1039/c2cy00459c
40 Chang H Z, Li J H, Yuan J, Chen L, Dai Y, Arandiyan H, Xu J Y, Hao J M. Ge. Mn-doped CeO2-WO3 catalysts for NH3-SCR of NOx: Effects of SO2 and H2 regeneration. Catalysis Today , 2012,
doi: 10.1016/j.cattod.2012.03.027
41 Khodayari R, Odenbrand C U I. Regeneration of commercial SCR catalysts by washing and sulphation: effect of sulphate groups on the activity. Applied Catalysis B: Environmental , 2001, 33(4): 277–291
doi: 10.1016/S0926-3373(01)00193-X
42 Zheng Y J, Jensen A D, Johnsson J E. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant. Applied Catalysis B: Environmental , 2005, 60(3-4): 253–264
doi: 10.1016/j.apcatb.2005.03.010
43 Lisi L, Lasorella G, Malloggi S, Russo G. Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts. Applied Catalysis B: Environmental , 2004, 50(4): 251–258
doi: 10.1016/j.apcatb.2004.01.007
44 Nicosia D, Czekaj I, Kroecher O. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels lubrication oils and urea solution- Part II. Characterization study of the effect of alkali and alkaline earth metals. Applied Catalysis B: Environmental , 2008, 77(3-4): 228–236
doi: 10.1016/j.apcatb.2007.07.032
45 Klimczak M, Kern P, Heinzelmann T, Lucas M, Claus P. High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts Part I: V2O5-WO3/TiO2 catalysts. Applied Catalysis B: Environmental , 2010, 95(1-2): 39–47
doi: 10.1016/j.apcatb.2009.12.007
46 Lietti L, Forzatti P, Ramis G, Busca G, Bregani F. Potassium doping of vanadia/titania de-NOx catalysts-surface characterization and reactivity study. Applied Catalysis B: Environmental , 1993, 3(1): 13–35
doi: 10.1016/0926-3373(93)80065-L
47 Kamata H, Takahashi K, Odenbrand C U I. The role of K2O in the selective reduction of NO with NH3 over a V2O5(WO3)/TiO2 commercial selective catalytic reduction catalyst. Journal of Molecular Catalysis A Chemical , 1999, 139(2-3): 189–198
doi: 10.1016/S1381-1169(98)00177-0
48 Khodayari R, Odenbrand C U I. Regeneration of commercial TiO2-V2O5-WO3 SCR catalysts used in bio fuel plants. Applied Catalysis B: Environmental , 2001, 30(1-2): 87–99
doi: 10.1016/S0926-3373(00)00227-7
49 Tang X F, Li J H, Hao J M. Significant enhancement of catalytic activities of manganese oxide octahedral molecular sieve by marginal amount of doping vanadium. Catalysis Communications , 2010, 11(10): 871–875
doi: 10.1016/j.catcom.2010.03.011
50 Chen L, Li J, Ge M. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3. Chemical Engineering Journal , 2011, 170(2-3): 531–537
doi: 10.1016/j.cej.2010.11.020
51 Calatayud M, Minot C. Effect of alkali doping on a V2O5/TiO2 catalyst from periodic DFT calculations. Journal of Physical Chemistry C , 2007, 111(17): 6411–6417
doi: 10.1021/jp068373v
52 Peng Y, Li J H, Chen L, Chen J H, Han J, Zhang H, Han W. Alkali metal poisoning of a CeO2-WO3 catalyst used in the selective catalytic reduction of NOx with NH3: an experimental and theoretical study. Environmental Science & Technology , 2012, 46(5): 2864–2869
doi: 10.1021/es203619w pmid:22303920
53 Lee S, Lee J, Keener T C. Mercury oxidation and adsorption characteristics of chemically promoted activated carbon sorbents. Fuel Processing Technology , 2009, 90(10): 1314–1318
doi: 10.1016/j.fuproc.2009.06.020
54 Lu D Y, Granatstein D L, Rose D J. Study of mercury speciation from simulated coal gasification. Industrial & Engineering Chemistry Research , 2004, 43(17): 5400–5404
doi: 10.1021/ie034121u
55 Presto A A, Granite E J, Karash A, Hargis R A, O'Dowd W J, Pennline H W. A kinetic approach to the catalytic oxidation of mercury in flue gas. Energy & Fuels , 2006, 20(5): 1941–1945
doi: 10.1021/ef060207z
56 Eswaran S, Stenger H G. Understanding mercury conversion in selective catalytic reduction (SCR) catalysts. Energy & Fuels , 2005, 19(6): 2328–2334
doi: 10.1021/ef050087f
57 Lee W, Bae G N. Removal of elemental mercury (Hg0) by nanosized V2O5/TiO2 catalysts. Environmental Science & Technology , 2009, 43(5): 1522–1527
doi: 10.1021/es802456y pmid:19350929
58 Li Y, Murphy P D, Wu C Y, Powers K W, Bonzongo J C. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas. Environmental Science & Technology , 2008, 42(14): 5304–5309
doi: 10.1021/es8000272 pmid:18754385
59 Strege J R, Zygarlicke C J, Folkedahl B C, McCollor D P. SCR deactivation in a full-scale cofired utility boiler. Fuel , 2008, 87(7): 1341–1347
doi: 10.1016/j.fuel.2007.06.017
60 Wan Q, Duan L, Li J H, Chen L, He K B, Hao J M. Deactivation performance and mechanism of alkali (earth) metals on V2O5-WO3/TiO2 catalyst for oxidation of gaseous elemental mercury in simulated coal-fired flue gas. Catalysis Today , 2011, 175(1): 189–195
doi: 10.1016/j.cattod.2011.03.011
61 Li H, Wu C Y, Li Y, Zhang J. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environmental Science & Technology , 2011, 45(17): 7394–7400
doi: 10.1021/es2007808 pmid:21770402
62 Yang S, Guo Y, Yan N, Wu D, He H, Xie J, Qu Z, Jia J. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture. Applied Catalysis B: Environmental , 2011, 101(3-4): 698–708
doi: 10.1016/j.apcatb.2010.11.012
63 Yang S, Guo Y, Yan N, Wu D, He H, Xie J, Qu Z, Yang C, Jia J. A novel multi-functional magnetic Fe-Ti-V spinel catalyst for elemental mercury capture and callback from flue gas. Chemical Communications , 2010, 46(44): 8377–8379
doi: 10.1039/c0cc02645j pmid:20927432
64 Chen L, Li J, Ge M, Ma L, Chang H. Mechanism of Selective Catalytic Reduction of NOx with NH3 over CeO2-WO3 Catalysts. Chinese Journal of Catalysis , 2011, 32(5): 836–841
doi: 10.1016/S1872-2067(10)60195-7
65 Wan Q, Duan L, He K, Li J. Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal-fired flue gas. Chemical Engineering Journal , 2011, 170(2-3): 512–517
doi: 10.1016/j.cej.2010.11.060
66 Qi G S, Yang R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania. Applied Catalysis B: Environmental , 2003, 44(3): 217–225
doi: 10.1016/S0926-3373(03)00100-0
67 Ji L, Sreekanth P M, Smirniotis P G, Thiel S W, Pinto N G. Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas. Energy & Fuels , 2008, 22(4): 2299–2306
doi: 10.1021/ef700533q
68 Li J, Yan N, Qu Z, Qiao S, Yang S, Guo Y, Liu P, Jia J. Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al2O3 at lower temperatures. Environmental Science & Technology , 2010, 44(1): 426–431
doi: 10.1021/es9021206 pmid:19950921
69 Niksa S, Fujiwara N. Estimating Hg emissions from coal-fired power stations in China. Fuel , 2009, 88(1): 214–217
doi: 10.1016/j.fuel.2008.07.017
70 Presto A A, Granite E J. Survey of catalysts for oxidation of mercury in flue gas. Environmental Science & Technology , 2006, 40(18): 5601–5609
doi: 10.1021/es060504i pmid:17007115
71 Granite E J, Pennline H W, Hargis R A. Novel sorbents for mercury removal from flue gas. Industrial & Engineering Chemistry Research , 2000, 39(4): 1020–1029
doi: 10.1021/ie990758v
72 Laudal D L, Brown T D, Nott B R. Effects of flue gas constituents on mercury speciation. Fuel Processing Technology , 2000, 65-66: 157–165
doi: 10.1016/S0378-3820(99)00083-1
73 Brandenberger S, Kroecher O, Tissler A, Althoff R. The State of the Art in Selective Catalytic Reduction of NOx by Ammonia Using Metal-Exchanged Zeolite Catalysts. Catalysis Reviews. Science and Engineering , 2008, 50(4): 492–531
doi: 10.1080/01614940802480122
74 Ma L, Li J H, Cheng Y S, Lambert C K, Fu L X. Propene poisoning on three typical Fe-zeolites for SCR of NOx with NH3: from mechanism study to coating modified architecture. Environmental Science & Technology , 2012, 46(3): 1747–1754
doi: 10.1021/es203070g pmid:22239740
75 Wilken N, Wijayanti K, Kamasamudram K, Currier N W, Vedaiyan R, Yezerets A, Olsson L. Mechanistic investigation of hydrothermal aging of Cu-Beta for ammonia SCR. Applied Catalysis B: Environmental , 2012, 111: 58–66
76 Peden C H F, Kwak J H, Burton S D, Tonkyn R G, Kim D H, Lee J H, Jen H W, Cavataio G, Cheng Y, Lambert C K. Possible origin of improved high temperature performance of hydrothermally aged Cu/beta zeolite catalysts. Catalysis Today , 2012, 184(1): 245–251
doi: 10.1016/j.cattod.2011.11.008
77 Li J H, Zhu R H, Cheng Y S, Lambert C K, Yang R T. Mechanism of propene poisoning on Fe-ZSM-5 for selective catalytic reduction of NO(x) with ammonia. Environmental Science & Technology , 2010, 44(5): 1799–1805
doi: 10.1021/es903576d pmid:20136123
78 Schwidder M, Heikens S, De Toni A, Geisler S, Berndt M, Brueckner A, Gruenert W. The role of NO2 in the selective catalytic reduction of nitrogen oxides over Fe-ZSM-5 catalysts: active sites for the conversion of NO and of NO/NO2 mixtures. Journal of Catalysis , 2008, 259(1): 96–103
doi: 10.1016/j.jcat.2008.07.014
79 Iwasaki M, Yamazaki K, Banno K, Shinjoh H. Characterization of Fe/ZSM-5 DeNOx catalysts prepared by different methods: Relationships between active Fe sites and NH3-SCR performance. Journal of Catalysis , 2008, 260(2): 205–216
doi: 10.1016/j.jcat.2008.10.009
80 Ma L, Chang H Z, Yang S J, Chen L, Fu L X, Li J H. Relations between iron sites and performance of Fe/HBEA catalysts prepared by two different methods for NH3-SCR. Chemical Engineering Journal , 2012, 209(15): 652–660
doi: 10.1016/j.cej.2012.08.042
81 Iwasaki M, Yamazaki K, Shinjoh H. NOx reduction performance of fresh and aged Fe-zeolites prepared by CVD: effects of zeolite structure and Si/Al2 ratio. Applied Catalysis B: Environmental , 2011, 102(1-2): 302–309
doi: 10.1016/j.apcatb.2010.12.016
82 Brandenberger S, Kroecher O, Casapu M, Tissler A, Althoff R. Hydrothermal deactivation of Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental , 2011, 101(3-4): 649–659
doi: 10.1016/j.apcatb.2010.11.006
83 Kwak J H, Tran D, Burton S D, Szanyi J, Lee J H, Peden C H F. Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites. Journal of Catalysis , 2012, 287: 203–209
doi: 10.1016/j.jcat.2011.12.025
84 Ye Q, Wang L, Yang R T. Activity, propene poisoning resistance and hydrothermal stability of copper exchanged chabazite-like zeolite catalysts for SCR of NO with ammonia in comparison to Cu/ZSM-5. Applied Catalysis A, General , 2012, 427: 24–34
doi: 10.1016/j.apcata.2012.03.026
85 Schmieg S J, Oh S H, Kim C H, Brown D B, Lee J H, Peden C H F, Kim D H. Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NOx reduction. Catalysis Today , 2012, 184(1): 252–261
doi: 10.1016/j.cattod.2011.10.034
86 Kwak J H, Tran D, Szanyi J, Peden C H F, Lee J H. The effect of copper loading on the selective catalytic reduction of nitric oxide by ammonia over Cu-SSZ-13. Catalysis Letters , 2012, 142(3): 295–301
doi: 10.1007/s10562-012-0771-y
87 Ren L, Zhu L, Yang C, Chen Y, Sun Q, Zhang H, Li C, Nawaz F, Meng X, Xiao F S. Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3. Chemical Communications , 2011, 47(35): 9789–9791
doi: 10.1039/c1cc12469b pmid:21625721
88 Rahkamaa-Tolonen K, Maunula T, Lomma M, Huuhtanen M, Keiski R L. The effect of NO2 on the activity of fresh and aged zeolite catalysts in the NH3-SCR reaction. Catalysis Today , 2005, 100(3-4): 217–222
doi: 10.1016/j.cattod.2004.09.056
89 Ma L, Li J H, Arandiyan H, Shi W B, Liu C X, Fu L X. Influence of calcination temperature on Fe/HBEA catalyst for the selective catalytic reduction of NOx with NH3. Catalysis Today , 2012, 184(1): 145–152
doi: 10.1016/j.cattod.2011.10.007
90 Klukowski D, Balle P, Geiger B, Wagloehner S, Kureti S, Kimmerle B, Baiker A, Grunwaldt J D. On the mechanism of the SCR reaction on Fe/HBEA zeolite. Applied Catalysis B: Environmental , 2009, 93(1-2): 185–193
doi: 10.1016/j.apcatb.2009.09.028
91 Burch R, Breen J P, Meunier F C. A review of the selective reduction of NOx, with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Applied Catalysis B: Environmental , 2002, 39(4): 283–303
doi: 10.1016/S0926-3373(02)00118-2
92 He H, Yu Y B. Selective catalytic reduction of NOx over Ag/Al2O3 catalyst: from reaction mechanism to diesel engine test. Catalysis Today , 2005, 100(1-2): 37–47
doi: 10.1016/j.cattod.2004.11.006
93 Wang X, Xu Y, Yu S, Wang C. The first study of SCR of NOx by acetylene in excess oxygen. Catalysis Letters , 2005, 103(1-2): 101–108
doi: 10.1007/s10562-005-6509-3
94 Wang X, Yu Q, Li G, Liu Z. Rate-determining step of selective catalystic reduction of NO by acetylene over HZSM-5. Catalysis Letters , 2008, 123(3-4): 289–293
doi: 10.1007/s10562-008-9421-9
95 Hu Y, Griffiths K, Norton P R. Surface science studies of selective catalytic reduction of NO: progress in the last ten years. Surface Science , 2009, 603(10-12): 1740–1750
doi: 10.1016/j.susc.2008.09.051
96 Jing G H, Li J H, Yang D, Hao J M. Promotional mechanism of Tungstation on selective catalytic reduction of NOx by Methane over In/WO3/ZrO2. Applied Catalysis B: Environmental , 2009, 91(1-2): 123–134
doi: 10.1016/j.apcatb.2009.05.015
97 Li J H, Hao J M, Cui X Y, Fu L X. Influence of preparation methods of In2O3/Al2O3 catalyst on selective catalytic reduction of NO by propene in the presence of oxygen. Catalysis Letters , 2005, 103(1-2): 75–82
doi: 10.1007/s10562-005-6506-6
98 Shimizu K, Satsuma A, Hattori T. Catalytic performance of Ag-Al2O3 catalyst for the selective catalytic reduction of NO by higher hydrocarbons. Applied Catalysis B: Environmental , 2000, 25(4): 239–247
doi: 10.1016/S0926-3373(99)00135-6
99 Li J H, Zhu Y Q, Ke R, Hao J M. Improvement of catalytic activity and sulfur-resistance of Ag/TiO2-Al2O3 for NO reduction with propene under lean burn conditions. Applied Catalysis B: Environmental , 2008, 80(3-4): 202–213
doi: 10.1016/j.apcatb.2007.08.016
100 Parvulescu V I, Cojocaru B, Parvulescu V, Richards R, Li Z, Cadigan C, Granger P, Miquel P, Hardacre C. Sol-gel-entrapped nano silver catalysts-correlation between active silver species and catalytic behavior. Journal of Catalysis , 2010, 272(1): 92–100
doi: 10.1016/j.jcat.2010.03.008
101 Miyadera T. Alumina-supported silver catalysts for the selective reduction of nitric-oxide with propene and oxygen-containing organic-compounds. Applied Catalysis B: Environmental , 1993, 2(2-3): 199–205
doi: 10.1016/0926-3373(93)80048-I
102 Kim M K, Kim P S, Baik J H, Nam I S, Cho B K, Oh S H. DeNOx performance of Ag/Al2O3 catalyst using simulated diesel fuel-ethanol mixture as reductant. Applied Catalysis B: Environmental , 2011, 105(1-2): 1–14
doi: 10.1016/j.apcatb.2011.03.017
103 Sultana A, Haneda M, Fujitani T, Hamada H. Influence of Al2O3 support on the activity of Ag/Al2O3 catalysts for SCR of NO with decane. Catalysis Letters , 2007, 114(1): 96–102
doi: 10.1007/s10562-007-9045-5
104 Shimizu K, Tsuzuki M, Kato K, Yokota S, Okumura K, Satsuma A. Reductive activation of O2 with H2-reduced silver clusters as a key step in the H2-promoted selective catalytic reduction of NO with C3H8 over Ag/Al2O3. Journal of Physical Chemistry C , 2007, 111(2): 950–959
doi: 10.1021/jp066147f
105 Korhonen S T, Beale A M, Newton M A, Weckhuysen B M. New insights into the active surface species of silver alumina catalysts in the selective catalytic reduction of NO. Journal of Physical Chemistry C , 2011, 115(4): 885–896
doi: 10.1021/jp102530y
106 She X, Flytzani-Stephanopoulos M. The role of Ag-O-Al species in silver-alumina catalysts for the selective catalytic reduction of NOx with methane. Journal of Catalysis , 2006, 237(1): 79–93
doi: 10.1016/j.jcat.2005.09.036
107 Sazama P, Capek L, Drobna H, Sobalik Z, Dedecek J, Arve K, Wichterlova B. Enhancement of decane-SCR-NOx over Ag/alumina by hydrogen. Reaction kinetics and in situ FTIR and UV-vis study. Journal of Catalysis , 2005, 232(2): 302–317
doi: 10.1016/j.jcat.2005.03.013
108 Yu Y B, He H, Feng Q C. Novel enolic surface species formed during partial oxidation of CH3CHO, C2H5OH, and C3H6 on Ag/Al2O3: an in situ DRIFTS study. Journal of Physical Chemistry B , 2003, 107(47): 13090–13092
doi: 10.1021/jp0350363
109 Yu Y B, Gao H W, He H. FTIR, TPD and DFT studies of intermediates on Ag/Al2O3 during the selective catalytic reduction of NO by C2H5OH. Catalysis Today , 2004, 93-95: 805–809
doi: 10.1016/j.cattod.2004.06.103
110 He H, Zhang X L, Wu Q, Zhang C B, Yu Y B. Review of Ag/Al2O3-Reductant system in the selective catalytic reduction of NOx. Catalysis Surveys from Asia , 2008, 12(1): 38–55
doi: 10.1007/s10563-007-9038-9
111 Wu Q, He H, Yu Y B. In situ DRIFTS study of the selective reduction of NOx with alcohols over Ag/Al2O3 catalyst: Role of surface enolic species. Applied Catalysis B: Environmental , 2005, 61(1-2): 107–113
doi: 10.1016/j.apcatb.2005.04.012
112 Wu Q, Gao H, He H. Study on Effect of SO2 on the Selective Catalytic Reduction of NOx with Propene over Ag/Al2O3 by in Situ DRIFTS. Chinese Journal of Catalysis , 2006, 27(5): 403–407
doi: 10.1016/S1872-2067(06)60025-9
113 Yu Y B, Song X P, He H. Remarkable influence of reductant structure on the activity of alumina-supported silver catalyst for the selective catalytic reduction of NOx. Journal of Catalysis , 2010, 271(2): 343–350
doi: 10.1016/j.jcat.2010.02.019
114 Takahashi A, Haneda M, Fujitani T, Hamada H. Selective reduction of NO2 with acetaldehyde over Co/Al2O3 in lean conditions. Journal of Molecular Catalysis A Chemical , 2007, 261(1): 6–11
doi: 10.1016/j.molcata.2006.07.065
115 Yu Q, Wang X, Xing N, Yang H, Zhang S. The role of protons in the NO reduction by acetylene over ZSM-5. Journal of Catalysis , 2007, 245(1): 124–132
doi: 10.1016/j.jcat.2006.10.002
116 Taatjes C A, Hansen N, McIlroy A, Miller J A, Senosiain J P, Klippenstein S J, Qi F, Sheng L S, Zhang Y W, Cool T A, Wang J, Westmoreland P R, Law M E, Kasper T, Kohse-H?inghaus K. Enols are common intermediates in hydrocarbon oxidation. Science , 2005, 308(5730): 1887–1889
doi: 10.1126/science.1112532 pmid:15890844
117 Yan Y, Yu Y, He H, Zhao J. Intimate contact of enolic species with silver sites benefits the SCR of NOx by ethanol over Ag/Al2O3. Journal of Catalysis , 2012, 293: 13–26
doi: 10.1016/j.jcat.2012.05.021
118 Epling W S, Campbell L E, Yezerets A, Currier N W, Parks J E II. Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts. Catalysis Reviews. Science and Engineering , 2004, 46(2): 163–245
doi: 10.1081/CR-200031932
119 Fridell E, Skoglundh M, Westerberg B, Johansson S, Smedler G. NOx storage in barium-containing catalysts. Journal of Catalysis , 1999, 183(2): 196–209
doi: 10.1006/jcat.1999.2415
120 Li J H, Goh G H, Yang X C, Yang R T. Non-thermal plasma-assisted catalytic NOx storage over Pt/Ba/Al2O3 at low temperatures. Applied Catalysis B: Environmental , 2009, 90(3-4): 360–367
doi: 10.1016/j.apcatb.2009.03.017
121 Nova I, Castoldi L, Lietti L, Tronconi E, Forzatti P, Prinetto F, Ghiotti G. NOx adsorption study over Pt-Ba/alumina catalysts: FT-IR and pulse experiments. Journal of Catalysis , 2004, 222(2): 377–388
doi: 10.1016/j.jcat.2003.11.013
122 Wang X, Yu Y, He H. Effects of temperature and reductant type on the process of NOx storage reduction over Pt/Ba/CeO2 catalysts. Applied Catalysis B: Environmental , 2011, 104(1-2): 151–160
doi: 10.1016/j.apcatb.2011.02.018
123 Elizundia U, Lopez-Fonseca R, Landa I, Gutierrez-Ortiz M A, Gonzalez-Velasco J R. FT-IR study of NOx storage mechanism over Pt/BaO/Al2O3 catalysts. Effect of the Pt-BaO interaction. Topics in Catalysis , 2007, 42-43(1-4): 37–41
doi: 10.1007/s11244-007-0147-5
124 Wang X, Yu Y, He H. Effect of Co addition to Pt/Ba/Al2O3 system for NOx storage and reduction. Applied Catalysis B: Environmental , 2010, 100(1-2): 19–30
doi: 10.1016/j.apcatb.2010.07.001
125 Jones A P. Indoor air quality and health. Atmospheric Environment , 1999, 33(28): 4535–4564
doi: 10.1016/S1352-2310(99)00272-1
126 Khan F I, Ghoshal A K. Removal of volatile organic compounds from polluted air. Journal of Loss Prevention in the Process Industries , 2000, 13(6): 527–545
doi: 10.1016/S0950-4230(00)00007-3
127 Armor J N. Environmental catalysis. Applied Catalysis B: Environmental , 1992, 1(4): 221–256
doi: 10.1016/0926-3373(92)80051-Z
128 Liotta L F, Ousmane M, Di Carlo G, Pantaleo G, Deganello G, Marci G, Retailleau L, Giroir-Fendler A. Total oxidation of propene at low temperature over Co3O4-CeO2 mixed oxides: role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity. Applied Catalysis A, General , 2008, 347(1): 81–88
doi: 10.1016/j.apcata.2008.05.038
129 Spivey J J. Complete catalytic-oxidation of volatile organics. Industrial & Engineering Chemistry Research , 1987, 26(11): 2165–2180
doi: 10.1021/ie00071a001
130 Liotta L F. Catalytic oxidation of volatile organic compounds on supported noble metals. Applied Catalysis B: Environmental , 2010, 100(3-4): 403–412
doi: 10.1016/j.apcatb.2010.08.023
131 Delimaris D, Ioannides T. VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method. Applied Catalysis B: Environmental , 2008, 84(1-2): 303–312
doi: 10.1016/j.apcatb.2008.04.006
132 Garcia T, Solsona B, Cazorla-Amoros D, Linares-Solano A, Taylor S H. Total oxidation of volatile organic compounds by vanadium promoted palladium-titania catalysts: Comparison of aromatic and polyaromatic compounds. Applied Catalysis B: Environmental , 2006, 62(1-2): 66–76
doi: 10.1016/j.apcatb.2005.06.016
133 Benard S, Giroir-Fendler A, Vernoux P, Guilhaume N, Fiaty K. Comparing monolithic and membrane reactors in catalytic oxidation of propene and toluene in excess of oxygen. Catalysis Today , 2010, 156(3-4): 301–305
doi: 10.1016/j.cattod.2010.07.019
134 Uzio D, Peureux J, Giroirfendler A, Torres M, Ramsay J, Dalmon J A. Platinum/gamma-Al2O3 catalytic membrane-preparation, morphological and catalytic characterizations. Applied Catalysis A, General , 1993, 96(1): 83–97
doi: 10.1016/0926-860X(93)80008-E
135 Huang S, Zhang C, He H. Complete oxidation of o-xylene over Pd/Al2O3 catalyst at low temperature. Catalysis Today , 2008, 139(1-2): 15–23
doi: 10.1016/j.cattod.2008.08.020
136 Centi G. Supported palladium catalysts in environmental catalytic technologies for gaseous emissions. Journal of Molecular Catalysis A Chemical , 2001, 173(1-2): 287–312
doi: 10.1016/S1381-1169(01)00155-8
137 Tidahy H L, Siffert S, Lamonier J F, Zhilinskaya E A, Aboukais A, Yuan Z Y, Vantomme A, Su B L, Canet X, De Weireld G, Frere M, N'Guyen T B, Giraudon J M, Leclercq G. New Pd/hierarchical macro-mesoporous ZrO2, TiO2 and ZrO2-TiO2 catalysts for VOCs total oxidation. Applied Catalysis A, General , 2006, 310: 61–69
doi: 10.1016/j.apcata.2006.05.020
138 Gelin P, Primet M. Complete oxidation of methane at low temperature over noble metal based catalysts: a review. Applied Catalysis B: Environmental , 2002, 39(1): 1–37
doi: 10.1016/S0926-3373(02)00076-0
139 Lyubovsky M, Pfefferle L, Datye A, Bravo J, Nelson T. TEM study of the microstructural modifications of an alumina-supported palladium combustion catalyst. Journal of Catalysis , 1999, 187(2): 275–284
doi: 10.1006/jcat.1999.2545
140 Zhu H Q, Qin Z F, Shan W J, Shen W J, Wang J G. Low-temperature oxidation of CO over Pd/CeO2-TiO2 catalysts with different pretreatments. Journal of Catalysis , 2005, 233(1): 41–50
doi: 10.1016/j.jcat.2005.04.033
141 Burch R, Urbano F J. Investigation of the active state of supported palladium catalysts in the combustion of methane. Applied Catalysis A, General , 1995, 124(1): 121–138
doi: 10.1016/0926-860X(94)00252-5
142 Yang S W, Maroto-Valiente A, Benito-Gonzalez M, Rodriguez-Ramos I, Guerrero-Ruiz A. Methane combustion over supported palladium catalysts I. Reactivity and active phase. Applied Catalysis B: Environmental , 2000, 28(3-4): 223–233
doi: 10.1016/S0926-3373(00)00178-8
143 Li W B, Wang J X, Gong H. Catalytic combustion of VOCs on non-noble metal catalysts. Catalysis Today , 2009, 148(1-2): 81–87
doi: 10.1016/j.cattod.2009.03.007
144 Chen J H, Shi W B, Zhang X Y, Arandiyan H, Li D F, Li J H. Roles of Li+ and Zr4+ cations in the catalytic performances of Co(1-x)MxCr2O4 (M= Li, Zr; x = 0-0.2) for methane combustion. Environmental Science & Technology , 2011, 45(19): 8491–8497
doi: 10.1021/es201659h pmid:21877726
145 Chen J H, Shi W B, Yang S J, Arandiyan H, Li J H. Distinguished roles with various vanadium loadings of CoCr2-xVxO4 (x = 0-0.20) for methane combustion. Journal of Physical Chemistry C , 2011, 115(35): 17400–17408
doi: 10.1021/jp202958b
146 Li J H, Liang X, Xu S C, Hao J M. Manganese-doped cobalt oxides on methane combustion at low temperature. Applied Catalysis B: Environmental , 2009, 90(1-2): 307–312
doi: 10.1016/j.apcatb.2009.03.027
147 Li J H, Fu H J, Fu L X, Hao J M. Complete combustion of methane over indium tin oxides catalysts. Environmental Science & Technology , 2006, 40(20): 6455–6459
doi: 10.1021/es061629q pmid:17120580
148 Wang X, Kang Q, Li D. Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts. Catalysis Communications , 2008, 9(13): 2158–2162
doi: 10.1016/j.catcom.2008.04.021
149 Wang X, Kang Q, Li D. Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts. Applied Catalysis B: Environmental , 2009, 86(3-4): 166–175
150 Wu Y, Zhang Y, Liu M, Ma Z. Complete catalytic oxidation of o-xylene over Mn-Ce oxides prepared using a redox-precipitation method. Catalysis Today , 2010, 153(3-4): 170–175
doi: 10.1016/j.cattod.2010.01.064
151 Morales M R, Barbero B P, Cadus L E. MnCu catalyst deposited on metallic monoliths for total oxidation of volatile organic compounds. Catalysis Letters , 2011, 141(11): 1598–1607
doi: 10.1007/s10562-011-0687-y
152 Chen M, Zheng X M. The effect of K and Al over NiCo2O4 catalyst on its character and catalytic oxidation of VOCs. Journal of Molecular Catalysis A Chemical , 2004, 221(1-2): 77–80
doi: 10.1016/j.molcata.2004.04.036
153 Chen M, Fan L, Qi L, Luo X, Zhou R, Zheng X. The catalytic combustion of VOCs over copper catalysts supported on cerium-modified and zirconium-pillared montmorillonite. Catalysis Communications , 2009, 10(6): 838–841
doi: 10.1016/j.catcom.2008.12.016
154 Cuervo M R, Díaz E, de Rivas B, López-Fonseca R, Ordó?ez S, Gutiérrez-Ortiz J I. Inverse gas chromatography as a technique for the characterization of the performance of Mn/Zr mixed oxides as combustion catalysts. Journal of Chromatography. A , 2009, 1216(45): 7873–7881
doi: 10.1016/j.chroma.2009.08.087 pmid:19747684
155 Tian W, Yang H, Fan X, Zhang X. Low-temperature catalytic oxidation of chlorobenzene over MnOx/TiO2-CNTs nano-composites prepared by wet synthesis methods. Catalysis Communications , 2010, 11(15): 1185–1188
doi: 10.1016/j.catcom.2010.06.010
156 Deng J, Zhang L, Dai H, Xia Y, Jiang H, Zhang H, He H. Ultrasound-Assisted Nanocasting Fabrication of Ordered Mesoporous MnO2 and Co3O4 with High Surface Areas and Polycrystalline Walls. Journal of Physical Chemistry C , 2010, 114(6): 2694–2700
doi: 10.1021/jp910159b
157 Xia Y, Dai H, Zhang L, Deng J, He H, Au C T. Ultrasound-assisted nanocasting fabrication and excellent catalytic performance of three-dimensionally ordered mesoporous chromia for the combustion of formaldehyde, acetone, and methanol. Applied Catalysis B: Environmental , 2010, 100(1-2): 229–237
doi: 10.1016/j.apcatb.2010.07.037
158 Zimowska M, Michalik-Zym A, Janik R, Machej T, Gurgul J, Socha R P, Podobinski J, Serwicka E M. Catalytic combustion of toluene over mixed Cu-Mn oxides. Catalysis Today , 2007, 119(1-4): 321–326
doi: 10.1016/j.cattod.2006.08.022
159 Sinha A K, Suzuki K. Three-dimensional mesoporous chromium oxide: a highly efficient material for the elimination of volatile organic compounds. Angewandte Chemie International Edition , 2004, 44(2): 271–273
doi: 10.1002/anie.200461284 pmid:15614914
160 Jones J, Ross J R H. The development of supported vanadia catalysts for the combined catalytic removal of the oxides of nitrogen and of chlorinated hydrocarbons from flue gases. Catalysis Today , 1997, 35(1-2): 97–105
doi: 10.1016/S0920-5861(96)00148-4
161 Collins J J, Ness R, Tyl R W, Krivanek N, Esmen N A, Hall T A. A review of adverse pregnancy outcomes and formaldehyde exposure in human and animal studies. Regulatory Toxicology and Pharmacology , 2001, 34(1): 17–34
doi: 10.1006/rtph.2001.1486 pmid:11502153
162 Lim M, Zhou Y, Wang L, Rudolph V, Lu G Q. Development and potential of new generation photocatalytic systems for air pollution abatement: an overview. Asia-Pacific Journal of Chemical Engineering , 2009, 4(4): 387–402
doi: 10.1002/apj.321
163 Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Chemical Reviews , 1995, 95(1): 69–96
doi: 10.1021/cr00033a004
164 Yang D, Liu H, Zheng Z, Yuan Y, Zhao J C, Waclawik E R, Ke X, Zhu H. An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. Journal of the American Chemical Society , 2009, 131(49): 17885–17893
doi: 10.1021/ja906774k pmid:19911792
165 Yu Y, Yu J C, Yu J G, Kwok Y C, Che Y K, Zhao J C, Ding L, Ge W K, Wong P K. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Applied Catalysis A, General , 2005, 289(2): 186–196
doi: 10.1016/j.apcata.2005.04.057
166 Zhang J, Xu Q, Feng Z, Li M, Li C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angewandte Chemie International Edition , 2008, 47(9): 1766–1769
doi: 10.1002/anie.200704788 pmid:18213667
167 Hu Y, Li D, Zheng Y, Chen W, He Y, Shao Y, Fu X, Xiao G. BiVO4/TiO2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. Applied Catalysis B: Environmental , 2011, 104(1-2): 30–36
doi: 10.1016/j.apcatb.2011.02.031
168 Zhang Y, Tang Z R, Fu X, Xu Y J. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano , 2010, 4(12): 7303–7314
doi: 10.1021/nn1024219 pmid:21117654
169 Xu Y, Zhuang Y, Fu X. New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: a case study on degradation of benzene and methyl orange. Journal of Physical Chemistry C , 2010, 114(6): 2669–2676
doi: 10.1021/jp909855p
170 Wang W, Yu J, Xiang Q, Cheng B. Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2-graphene composites for photodegradation of acetone in air. Applied Catalysis B: Environmental , 2012, 119: 109–116
doi: 10.1016/j.apcatb.2012.02.035
171 Hu X, Hu C, Qu J. Photocatalytic decomposition of acetaldehyde and Escherichia coli using NiO/SrBi2O4 under visible light irradiation. Applied Catalysis B: Environmental , 2006, 69(1-2): 17–23
doi: 10.1016/j.apcatb.2006.05.008
172 Kim J H, Seo G, Cho D L, Choi B C, Kim J B, Park H J, Kim M W, Song S J, Kim G J, Kato S. Development of air purification device through application of thin-film photocatalyst. Catalysis Today , 2006, 111(3-4): 271–274
doi: 10.1016/j.cattod.2005.10.058
173 Ji P, Takeuchi M, Cuong T, Zhang J, Matsuoka M, Anpo M. Recent advances in visible light-responsive titanium oxide-based photocatalysts. Research on Chemical Intermediates , 2010, 36(4): 327–347
doi: 10.1007/s11164-010-0142-5
174 Zhang J, Wu Y, Xing M, Leghari S A K, Sajjad S. Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy & Environmental Science , 2010, 3(6): 715–726
doi: 10.1039/b927575d
175 Rehman S, Ullah R, Butt A M, Gohar N D. Strategies of making TiO2 and ZnO visible light active. Journal of Hazardous Materials , 2009, 170(2-3): 560–569
doi: 10.1016/j.jhazmat.2009.05.064 pmid:19540666
176 Yu J, Xiang Q, Zhou M. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Applied Catalysis B: Environmental , 2009, 90(3-4): 595–602
doi: 10.1016/j.apcatb.2009.04.021
177 Dong F, Wang H, Wu Z, Qiu J. Marked enhancement of photocatalytic activity and photochemical stability of N-doped TiO2 nanocrystals by Fe3+/Fe2+ surface modification. Journal of Colloid and Interface Science , 2010, 343(1): 200–208
doi: 10.1016/j.jcis.2009.11.012 pmid:19969303
178 Dong F, Wang H, Wu Z. One-step “Green” Synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity. Journal of Physical Chemistry C , 2009, 113(38): 16717–16723
doi: 10.1021/jp9049654
179 Dong F, Guo S, Wang H, Li X, Wu Z. Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach. Journal of Physical Chemistry C , 2011, 115(27): 13285–13292
doi: 10.1021/jp111916q
180 Qiu X, Miyauchi M, Sunada K, Minoshima M, Liu M, Lu Y, Li D, Shimodaira Y, Hosogi Y, Kuroda Y, Hashimoto K. Hybrid CuxO/TiO? nanocomposites as risk-reduction materials in indoor environments. ACS Nano , 2012, 6(2): 1609–1618
doi: 10.1021/nn2045888 pmid:22208891
181 Zhang L, Fu H, Zhu Y. Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Advanced Functional Materials , 2008, 18(15): 2180–2189
doi: 10.1002/adfm.200701478
182 Guo S, Wu Z, Zhao W. TiO2-based building materials: above and beyond traditional applications. Chinese Science Bulletin , 2009, 54(7): 1137–1142
doi: 10.1007/s11434-009-0063-0
183 Mendez-Roman R, Cardona-Martinez N. Relationship between the formation of surface species and catalyst deactivation during the gas-phase photocatalytic oxidation of toluene. Catalysis Today , 1998, 40(4): 353–365
doi: 10.1016/S0920-5861(98)00064-9
184 Lei H, Li D Q, Lin Y J, Evans D G, Xue D. Influence of nano-MgO particle size on bactericidal action against Bacillus subtilis var. niger. Chinese Science Bulletin , 2005, 50(6): 514–519
185 Neal A L. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology (London, England) , 2008, 17(5): 362–371
doi: 10.1007/s10646-008-0217-x pmid:18454313
186 He H, Dong X P, Yang M, Yang Q X, Duan S M, Yu Y B, Han J, Zhang C B, Chen L, Yang X. Catalytic inactivation of SARS coronavirus, Escherichia coli and yeast on solid surface. Catalysis Communications , 2004, 5(3): 170–172
doi: 10.1016/j.catcom.2003.12.009
187 Chang Q, He H, Zhao J, Yang M, Qut J. Bactericidal activity of a Ce-promoted Ag/AlPO4 catalyst using molecular oxygen in water. Environmental Science & Technology , 2008, 42(5): 1699–1704
doi: 10.1021/es071810e pmid:18441823
188 Chen M, Yan L, He H, Chang Q, Yu Y, Qu J. Catalytic sterilization of Escherichia coli K 12 on Ag/Al2O3 surface. Journal of Inorganic Biochemistry , 2007, 101(5): 817–823
doi: 10.1016/j.jinorgbio.2007.01.008 pmid:17350102
189 Yan L Z, Chen M X, He H, Qu J H. Bactericidal effect of Al2O3-supported Ag catalyst. Chinese Journal of Catalysis , 2005, 26(12): 1122–1126
190 Zhang C B, He H, Tanaka K. Perfect catalytic oxidation of formaldehyde over a Pt/TiO2 catalyst at room temperature. Catalysis Communications , 2005, 6(3): 211–214
doi: 10.1016/j.catcom.2004.12.012
191 Wang R H, Li J H. OMS-2 Catalysts for Formaldehyde Oxidation: Effects of Ce and Pt on Structure and Performance of the Catalysts. Catalysis Letters , 2009, 131(3-4): 500–505
doi: 10.1007/s10562-009-9939-5
192 Zhang C, Liu F, Zhai Y, Ariga H, Yi N, Liu Y, Asakura K, Flytzani-Stephanopoulos M, He H. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures. Angewandte Chemie International Edition , 2012, 51(38): 9628–9632
doi: 10.1002/anie.201202034 pmid:22930519
193 Li J H, Wang R H, Hao J M. Role of lattice oxygen and lewis acid on ethanol oxidation over OMS-2 catalyst. Journal of Physical Chemistry C , 2010, 144(23): 10544–10550
doi: 10.1021/jp102779u
194 Wang R H, Li J H. Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures. Environmental Science & Technology , 2010, 44(11): 4282–4287
doi: 10.1021/es100253c pmid:20446658
195 Chen T, Dou H Y, Li X L, Tang X F, Li J H, Hao J M. Tunnel structure effect of manganese oxides in complete oxidation of formaldehyde. Microporous and Mesoporous Materials , 2009, 122(1-3): 170–174
196 Zhang C, He H. A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature. Catalysis Today , 2007, 126(3-4): 345–350
doi: 10.1016/j.cattod.2007.06.010
197 An N, Yu Q, Liu G, Li S, Jia M, Zhang W. Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method. Journal of Hazardous Materials , 2011, 186(2-3): 1392–1397
doi: 10.1016/j.jhazmat.2010.12.018 pmid:21211900
198 Huang H, Leung D Y C. Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature. Journal of Catalysis , 2011, 280(1): 60–67
doi: 10.1016/j.jcat.2011.03.003
199 Zhang C B, He H, Tanaka K. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Applied Catalysis B: Environmental , 2006, 65(1-2): 37–43
doi: 10.1016/j.apcatb.2005.12.010
200 He Y, Ji H. In-Situ DRIFTS Study on Catalytic Oxidation of Formaldehyde over Pt/TiO2 under Mild Conditions. Chinese Journal of Catalysis , 2010, 31(2): 171–175
doi: 10.1016/S1872-2067(09)60043-7
201 Beltrán F J, Rivas F J, Montero-de-Espinosa R. Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor. Applied Catalysis B: Environmental , 2002, 39(3): 221–231
doi: 10.1016/S0926-3373(02)00102-9
202 Martins R C, Amaral-Silva N, Quinta-Ferreira R M. Ceria based solid catalysts for Fenton's depuration of phenolic wastewaters, biodegradability enhancement and toxicity removal. Applied Catalysis B: Environmental , 2010, 99(1-2): 135–144
doi: 10.1016/j.apcatb.2010.06.010
203 Lee B D, Hosomi M. Fenton oxidation of ethanol-washed distillation-concentrated benzo(a)pyrene: reaction product identification and biodegradability. Water Research , 2001, 35(9): 2314–2319
doi: 10.1016/S0043-1354(00)00485-1 pmid:11358313
204 Cheng M, Ma W, Li J, Huang Y, Zhao J, Wen Y, Xu Y. Visible-light-assisted degradation of dye pollutants over Fe(III)-loaded resin in the presence of H2O2 at neutral pH values. Environmental Science & Technology , 2004, 38(5): 1569–1575
doi: 10.1021/es034442x pmid:15046361
205 Pignatello J J, Oliveros E, Mackay A. Advanced oxidation processes for organic contaiminant destruction based on the Fenton reaction and related chemistry. Environmental Science & Technology , 2006, 36(1): 1–84
doi: 10.1080/10643380500326564
206 Luo M, Bowden D, Brimblecombe P. Catalytic property of Fe-Al pillared clay for Fenton oxidation of phenol by H2O2. Applied Catalysis B: Environmental , 2009, 85(3-4): 201–206
doi: 10.1016/j.apcatb.2008.07.013
207 Menini L, Silva M J, Lelis M F F, Fabris J D, Lago R M, Gusevskaya E V. Novel solvent free liquid-phase oxidation of β-pinene over heterogeneous catalysts based on Fe3-xMxO4 (M=Co and Mn). Applied Catalysis A, General , 2001, 269(1-2): 117–121
208 Kwan W P, Voelker B M. Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environmental Science & Technology , 2002, 36(7): 1467–1476
doi: 10.1021/es011109p pmid:11999052
209 He J, Ma W, He J, Zhao J, Yu J C. Photooxidation of azo dye in aqueous dispersions of H2O2/α-FeOOH. Applied Catalysis B: Environmental , 2002, 39(3): 211–220
doi: 10.1016/S0926-3373(02)00085-1
210 Costa R C C, Lelis M F F, Oliveria L C A, Fabris J D, Ardisson J D, Rios R R V A, Silva C N, Lago R M. Remarkable effect of Co and Mn on the activity of Fe3-xMxO4 promoted oxidation of organic contaminants in aqueous medium with H2O2. Catalysis Communications , 2003, 4(10): 525–529
doi: 10.1016/j.catcom.2003.08.002
211 Costa R C C, Lelis M F F, Oliveira L C, Fabris J D, Ardisson J D, Rios R R V A, Silva C N, Lago R M. Novel active heterogeneous Fenton system based on Fe3-xMxO4 (Fe, Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions. Journal of Hazardous Materials , 2006, 129(1-3): 171–178
doi: 10.1016/j.jhazmat.2005.08.028 pmid:16298475
212 Guimaraes I R, Giroto A, Oliveira L C A, Guerreiro M C, Lima D Q, Fabris J D. Synthesis and thermal treatment of cu-doped goethite: oxidation of quinoline through heterogeneous fenton process. Applied Catalysis B: Environmental , 2009, 91(3-4): 591–586
213 Baldrian P, Merhautová V, Gabriel J, Nerud F, Stopka P, Hruby M, Benes M J. Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides. Applied Catalysis B: Environmental , 2006, 66(3-4): 258–264
doi: 10.1016/j.apcatb.2006.04.001
214 Yang L, Hu C, Nie Y, Qu J. Catalytic ozonation of selected pharmaceuticals over mesoporous alumina-supported manganese oxide. Environmental Science & Technology , 2009, 43(7): 2525–2529
doi: 10.1021/es803253c pmid:19452911
215 Zhang L, Nie Y, Hu C, Qu J. Enhanced Fenton degradation of Rhodamine B over nanoscaled Cu-doped LaTiO3 perovskite. Applied Catalysis B: Environmental , 2012, 125: 418–424
doi: 10.1016/j.apcatb.2012.06.015
216 Feng J, Hu X, Yue P L. Degradation of salicylic acid by photo-assisted Fenton reaction using Fe ions on strongly acidic ion exchange resin as catalyst. Chemical Engineering Journal , 2004, 100(1-3): 159–165
doi: 10.1016/j.cej.2004.01.031
217 Noorjahan M, Durga Kumari V, Subrahmanyam M, Panda L. Immobilized Fe(III)-HY: an efficient and stable photo-Fenton catalyst. Applied Catalysis B: Environmental , 2005, 57(4): 291–298
doi: 10.1016/j.apcatb.2004.11.006
218 Fernandez J, Bandara J, Lopez A, Buffat P, Kiwi J. Photoassisted Fenton degradation of nonbiodegradable azo dye (Orange II) in Fe-free solutions mediated by cation transfer membranes. Langmuir , 1999, 15(1): 185–192
doi: 10.1021/la980382a
219 Sorokin A, Séris J L, Meunier B. Efficient oxidative dechlorination and aromatic ring cleavage of chlorinated phenols catalyzed by iron sulfophalocyanine. Science , 1995, 28(26): 1163–1166
doi: 10.1126/science.268.5214.1163
220 Huang Y, Li J, Ma W, Cheng M, Zhao J, Yu J C. Efficient H2O2 oxidation of organic pollutants catalyzed by supported iron sulfophenylporphyrin under visible light irradiation. Journal of Physical Chemistry B , 2004, 108(22): 7263–7270
doi: 10.1021/jp036054n
221 Nie Y, Hu C, Qu J, Hu X. Efficient photodegradation of Acid Red B by immobilized ferrocene in the presence of UVA and H2O2. Journal of Hazardous Materials , 2008, 154(1-3): 146–152
doi: 10.1016/j.jhazmat.2007.10.005 pmid:18023969
222 Huang Y, Ma W, Li J, Cheng M, Zhao J, Wan L, Yu J C. A novel β-CD-Hemin complex photocatalyst for efficient degradation of organic pollutants at neutral pHs under visible irradiation. Journal of Physical Chemistry B , 2003, 107(35): 9409–9414
doi: 10.1021/jp034854s
223 Lunar L, Sicilia D, Rubio S, Pérez-Bendito D, Nickel U. Degradation of photographic developers by Fenton’s reagent: condition optimization and kinetics for metol oxidation. Water Research , 2000, 34(6): 1791–1802
doi: 10.1016/S0043-1354(99)00339-5
224 Park J W, Lee S E, Rhee I K, Kim J E. Transformation of the fungicide chlorothalonil by Fenton reagent. Journal of Agricultural and Food Chemistry , 2002, 50(26): 7570–7575
doi: 10.1021/jf025772o pmid:12475272
225 Chen J, Zhu L. Catalytic degradation of Orange II by UV-Fenton with hydroxyl-Fe-pillared bentonite in water. Chemosphere , 2006, 65(7): 1249–1255
doi: 10.1016/j.chemosphere.2006.04.016 pmid:16735046
226 Feng J, Hu X, Yue P L. Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of Orange II. Environmental Science & Technology , 2004, 38(1): 269–275
doi: 10.1021/es034515c pmid:14740746
227 Feng J, Hu X, Yue P L, Zhu H Y, Lu G Q. Degradation of azo-dye Orange II by a photoassisted Fenton reaction using a novel composite of iron oxide and silicate nanoparticles as a catalyst. Industrial & Engineering Chemistry Research , 2003, 42(10): 2058–2066
doi: 10.1021/ie0207010
228 Nawrocki J, Kasprzyk-Hordern B. The efficiency and mechanisms of catalytic ozonation. Applied Catalysis B: Environmental , 2010, 99(1-2): 27–42
doi: 10.1016/j.apcatb.2010.06.033
229 Kasprzyk-Hordern B, Zió?ek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Applied Catalysis B: Environmental , 2003, 46(4): 639–669
doi: 10.1016/S0926-3373(03)00326-6
230 Ernst M, Lurot F, Schrotter J C. Catalytic ozonation of refractory organic model compounds in aqueous solution by aluminum oxide. Applied Catalysis B: Environmental , 2004, 47(1): 15–25
doi: 10.1016/S0926-3373(03)00290-X
231 Yang Y, Ma J, Qin Q, Zhai X. Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation. Journal of Molecular Catalysis A Chemical , 2007, 267(1-2): 41–48
doi: 10.1016/j.molcata.2006.09.010
232 Zhang T, Li C, Ma J, Tian H, Qiang Z. Surface hydroxyl groups of synthetic α-FeOOH in promoting OH generation from aqueous ozone: property and activity relationship. Applied Catalysis B: Environmental , 2008, 82(1-2): 131–137
doi: 10.1016/j.apcatb.2008.01.008
233 Lv A, Hu C, Nie Y, Qu J. Catalytic ozonation of toxic pollutants over magnetic cobalt and manganese co-doped γ-Fe2O3. Applied Catalysis B: Environmental , 2010, 100(1-2): 62–67
doi: 10.1016/j.apcatb.2010.07.011
234 Lv A, Hu C, Nie Y, Qu J.Catalytic ozonation of toxic pollutants over magnetic cobalt-doped Fe3O4 suspensions. Applied Catalysis B: Environmental , 2012, 117-118: 246-252
235 Lin J, Nakajima T, Jomoto T, Hiraiwa K. Effective catalysts for wet oxidation of formic acid by oxygen and ozone. Ozone Science and Engineering , 2000, 22(3): 241–247
doi: 10.1080/01919510008547208
236 Xing S, Hu C, Qu J, He H, Yang M. Characterization and reactivity of MnOx supported on mesoporous zirconia for herbicide 2,4-D mineralization with ozone. Environmental Science & Technology , 2008, 42(9): 3363–3368
doi: 10.1021/es0718671 pmid:18522119
237 Hu C, Xing S, Qu J, He H. Catalytic ozonation of herbicide 2,4-D over cobalt oxide supported on mesoporous zirconia. Journal of Physical Chemistry C , 2008, 112(15): 5978–5983
doi: 10.1021/jp711463e
238 Yang L, Hu C, Nie Y, Qu J. Surface acidity and reactivity of β-FeOOH/Al2O3 for pharmaceuticals degradation with ozone: in situ ATR-FTIR studies. Applied Catalysis B: Environmental , 2010, 97(3-4): 340–346
doi: 10.1016/j.apcatb.2010.04.014
239 Zhao L, Ma J, Sun Z, Zhai X. Mechanism of influence of initial pH on the degradation of nitrobenzene in aqueous solution by ceramic honeycomb catalytic ozonation. Environmental Science & Technology , 2008, 42(11): 4002–4007
doi: 10.1021/es702926q pmid:18589958
240 Zhao L, Sun Z, Ma J. Novel relationship between hydroxyl radical initiation and surface group of ceramic honeycomb supported metals for the catalytic ozonation of nitrobenzene in aqueous solution. Environmental Science & Technology , 2009, 43(11): 4157–4163
doi: 10.1021/es900084w pmid:19569345
241 Jans U, Hoigné J. Activated carbon and carbon black catalyzed transformation of aqueous ozone into OH-radicals. Ozone Science and Engineering , 1998, 20(1): 67–90
doi: 10.1080/01919519808547291
242 Rivas F J, Carbajo M, Beltrán F J, Acedo B, Gimeno O. Perovskite catalytic ozonation of pyruvic acid in water: operating conditions influence and kinetics. Applied Catalysis B: Environmental , 2006, 62(1-2): 93–103
doi: 10.1016/j.apcatb.2005.07.002
243 Valdés H, Farfán V J, Manoli J A, Zaror C A. Catalytic ozone aqueous decomposition promoted by natural zeolite and volcanic sand. Journal of Hazardous Materials , 2009, 165(1-3): 915–922
doi: 10.1016/j.jhazmat.2008.10.093 pmid:19058912
245 Maldotti A, Molinari A, Amadelli R. Photocatalysis with organized systems for the oxofunctionalization of hydrocarbons by O2. Chemical Reviews , 2002, 102(10): 3811–3836
doi: 10.1021/cr010364p pmid:12371903
246 Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews , 1995, 95(3): 735–758
doi: 10.1021/cr00035a013
247 Fox M A, Dulay M T. Heterogeneous photocatalysis. Chemical Reviews , 1993, 93(1): 341–357
doi: 10.1021/cr00017a016
248 Hincapie M, Maldonado M I, Oller I, Gernjak W, Sanchez-Perez J A, Ballesteros M M, Malato S. Solar photocatalytic degradation and detoxification of EU priority substances. Catalysis Today , 2005, 101(3-4): 203–210
doi: 10.1016/j.cattod.2005.03.004
249 Kubacka A, Fernandez-García M, Colon G. Nanostructured Ti-M mixed-metal oxides: toward a visible light-driven photocatalyst. Journal of Catalysis , 2008, 254(2): 272–284
doi: 10.1016/j.jcat.2008.01.005
250 Kamat P V. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. Journal of Physical Chemistry C , 2008, 112(48): 18737–18753
251 Maeda K, Domen K. New non-oxide photocatalysts designed for overall water splitting under visible light. Journal of Physical Chemistry C , 2007, 111(22): 7851–7861
doi: 10.1021/jp070911w
252 Hur S G, Kim T W, Hwang S J, Choy J H. Influences of A- and B-site cations on the physicochemical properties of perovskite-structured A(In1/3Nb1/3B1/3)O3 (A= Sr, Ba; B= Sn, Pb) photocatalysts. Journal of Photochemistry and Photobiology A Chemistry , 2006, 183(1-2): 176–181
doi: 10.1016/j.jphotochem.2006.03.014
253 Yang Y, Sun Y, Jiang Y. Structure and photocatalytic property of perovskite and perovskite-related compounds. Materials Chemistry and Physics , 2006, 96(2-3): 234–239
doi: 10.1016/j.matchemphys.2005.07.007
254 Li S, Jing L, Fu W, Yang L, Xin B, Fu H. Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation. Materials Research Bulletin , 2007, 42(2): 203–212
doi: 10.1016/j.materresbull.2006.06.010
255 Joshi U A, Jang J S, Borse P H, Lee J S. Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Applied Physics Letters , 2008, 92(24): 242106–242109
doi: 10.1063/1.2946486
256 Ruan Q J, Zhang W D. Tunable Morphology of Bi2Fe4O9 Crystals for photocatalytic oxidation. Journal of Physical Chemistry C , 2009, 113(10): 4168–4173
doi: 10.1021/jp810098f
257 Fu H, Zhang L, Yao W, Zhu Y. Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process. Applied Catalysis B: Environmental , 2006, 66(1-2): 100–110
doi: 10.1016/j.apcatb.2006.02.022
258 Martínez de la Cruz A, Obregon Alfaro S, Lopez Cuellar E, Ortiz Mendez U. Photocatalytic properties of Bi2MoO6 nanoparticles prepared by an amorphous complex precursor. Catalysis Today , 2010, 129(1-2): 194–199
259 Lin X, Huang T, Huang F, Wang W, Shi J. Photocatalytic activity of a Bi-based oxychloride Bi3O4Cl. Journal of Physical Chemistry B , 2006, 110(48): 24629–24634
doi: 10.1021/jp065373m
260 Lin X, Shan Z, Li K, Wang W, Yang J, Huang F. Photocatalytic activity of a novel Bi-based oxychloride catalyst Na0.5Bi1.5O2Cl. Solid State Sciences , 2007, 9(10): 944–949
doi: 10.1016/j.solidstatesciences.2007.07.010
261 Shan Z, Wang W, Lin X, Ding H, Huang F. Photocatalytic degradation of organic dyes on visible-light responsive photocatalyst PbBiO2Br. Journal of Solid State Chemistry , 2008, 181(6): 1361–1366
doi: 10.1016/j.jssc.2008.03.001
262 Wang W D, Huang F Q, Lin X P, Yang J H. Visible-light-responsive photocatalysts xBiOBr-(1-x)BiOI. Catalysis Communications , 2008, 9(1): 8–12
doi: 10.1016/j.catcom.2007.05.014
263 Mackenzie K, Frenzel H, Kopinke F D. Hydrodehalogenation of halogenated hydrocarbons in water with Pd catalysts: reaction rates and surface competition. Applied Catalysis B: Environmental , 2006, 63(3-4): 161–167
doi: 10.1016/j.apcatb.2005.10.004
264 Hurley K D, Shapley J R. Efficient heterogeneous catalytic reduction of perchlorate in water. Environmental Science & Technology , 2007, 41(6): 2044–2049
doi: 10.1021/es0624218 pmid:17410803
265 Frierdich A J, Shapley J R, Strathmann T J. Rapid reduction of N-nitrosamine disinfection byproducts in water with hydrogen and porous nickel catalysts. Environmental Science & Technology , 2008, 42(1): 262–269
doi: 10.1021/es0712928 pmid:18350906
266 Chaplin B P, Reinhard M, Schneider W F, Schüth C, Shapley J R, Strathmann T J, Werth C J. Critical review of Pd-based catalytic treatment of priority contaminants in water. Environmental Science & Technology , 2012, 46(7): 3655–3670
doi: 10.1021/es204087q pmid:22369144
267 Horold S, Vorlop K D, Tacke T, Sell M. Development of catalysts for a selective nitrate and nitrite removal from drinking water. Catalysis Today , 1993, 17(1-2): 21–30
doi: 10.1016/0920-5861(93)80004-K
268 Hurley K D, Zhang Y X, Shapley J R. Ligand-enhanced reduction of perchlorate in water with heterogeneous Re-Pd/C catalysts. Journal of the American Chemical Society , 2009, 131(40): 14172–14173
doi: 10.1021/ja905446t pmid:19772317
269 Davie M G, Shih K, Pacheco F A, Leckie J O, Reinhard M. Palladium-indium catalyzed reduction of N-nitrosodimethylamine: indium as a promoter metal. Environmental Science & Technology , 2008, 42(8): 3040–3046
doi: 10.1021/es7023115 pmid:18497163
270 Schreier C G, Reinhard M. Catalytic hydrodehalogenation of chlorinated ethylenes using palladium and hydrogen for the treatment of contaminated water. Chemosphere , 1995, 31(6): 3475–3487
doi: 10.1016/0045-6535(95)00200-R
271 Schuth C, Reinhard M. Hydrodechlorination and hydrogenation of aromatic compounds over palladium on alumina in hydrogen-saturated water. Applied Catalysis B: Environmental , 1998, 18(3-4): 215–221
doi: 10.1016/S0926-3373(98)00037-X
272 Vorlop K D, Prüsse U. Catalytical removing nitrate from water. Environmental catalysis, 1999, 369: 195-218
273 Mikami I, Sakamoto Y, Yoshinaga Y, Okuhara T. Kinetic and adsorption studies on the hydrogenation of nitrate and nitrite in water using Pd-Cu on active carbon support. Applied Catalysis B: Environmental , 2003, 44(1): 79–86
doi: 10.1016/S0926-3373(03)00021-3
274 Mikami I, Yoshinaga Y, Okuhara T. Rapid removal of nitrate in water by hydrogenation to ammonia with Zr-modified porous Ni catalysts. Applied Catalysis B: Environmental , 2004, 49(3): 173–179
doi: 10.1016/j.apcatb.2003.12.009
275 Coq B, Figueras F. Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance. Journal of Molecular Catalysis A Chemical , 2001, 173(1-2): 117–134
doi: 10.1016/S1381-1169(01)00148-0
276 Venezia A M, Liotta L F, Pantaleo G, La Parola V, Deganello G, Beck A, Koppany Z, Frey K, Horvath D, Guczi L. Activity of SiO2 supported gold-palladium catalysts in CO oxidation. Applied Catalysis A, General , 2003, 251(2): 359–368
doi: 10.1016/S0926-860X(03)00343-0
277 Nutt M O, Hughes J B, Michael S W. Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environmental Science & Technology , 2005, 39(5): 1346–1353
doi: 10.1021/es048560b pmid:15787376
278 Nutt M O, Heck K N, Alvarez P, Wong M S. Improved Pdon-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Applied Catalysis B: Environmental , 2006, 69(1-2): 115–125
doi: 10.1016/j.apcatb.2006.06.005
279 Pintar A, Batista J, Levec J, Kajiuchi T. Kinetics of the catalytic liquid-phase hydrogenation of aqueous nitrate solutions. Applied Catalysis B: Environmental , 1996, 11(1): 81–98
doi: 10.1016/S0926-3373(96)00036-7
280 Prusse U, Vorlop K D. Supported bimetallic palladium catalysts for water-phase nitrate reduction. Journal of Molecular Catalysis A Chemical , 2001, 173(1-2): 313–328
doi: 10.1016/S1381-1169(01)00156-X
282 He F, Zhao D Y. Hydrodechlorination of trichloroethene using stabilized Fe-Pd nanoparticles: Reaction mechanism and effects of stabilizers, catalysts and reaction conditions. Applied Catalysis B: Environmental , 2008, 84(3-4): 533–540
doi: 10.1016/j.apcatb.2008.05.008
283 Yoshinaga Y, Akita T, Mikami I, Okuhara T. Hydrogenation of nitrate in water to nitrogen over Pd-Cu supported on active carbon. Journal of Catalysis , 2002, 207(1): 37–45
doi: 10.1006/jcat.2002.3529
284 Zhang F X, Miao S, Yang Y L, Zhang X, Chen J X, Guan N J. Size-dependent hydrogenation selectivity of nitrate on Pd-Cu/TiO2 catalysts. Journal of Physical Chemistry C , 2008, 112(20): 7665–7671
doi: 10.1021/jp800060g
285 Gavagnin R, Biasetto L, Pinna F, Strukul G. Nitrate removal in drinking waters: the effect of tin oxides in the catalytic hydrogenation of nitrate by Pd/SnO2 catalysts. Applied Catalysis B: Environmental , 2002, 38(2): 91–99
doi: 10.1016/S0926-3373(02)00032-2
286 Neyertz C, Marchesini F A, Boix A, Miro E, Querini C A. Catalytic reduction of nitrate in water: promoted palladium catalysts supported in resin. Applied Catalysis A, General , 2010, 372(1): 40–47
doi: 10.1016/j.apcata.2009.10.001
287 Dodouche I, Barbosa D P, Rangel M D, Epron F. Palladium-tin catalysts on conducting polymers for nitrate removal. Applied Catalysis B: Environmental , 2009, 93(1-2): 50–55
doi: 10.1016/j.apcatb.2009.09.011
288 Chinthaginjala J K, Bitter J H, Lefferts L. Thin layer of carbon-nano-fibers (CNFS) as catalyst support for fast mass transfer in hydrogenation of nitrite. Applied Catalysis A, General , 2010, 383(1-2): 24–32
doi: 10.1016/j.apcata.2010.05.013
290 Schuth C, Disser S, Schuth F, Reinhard M. Tailoring catalysts for hydrodechlorinating chlorinated hydrocarbon contaminants in groundwater. Applied Catalysis B: Environmental , 2000, 28(3-4): 147–152
doi: 10.1016/S0926-3373(00)00171-5
291 Henry C R. Surface studies of supported model catalysts. Surface Science Reports , 1998, 31(7-8): 235–325
292 Xie Y B, Cao H B, Li Y P, Zhang Y, Crittenden J C. Highly selective PdCu/amorphous silica-alumina (ASA) catalysts for groundwater denitration. Environmental Science & Technology , 2011, 45(9): 4066–4072
doi: 10.1021/es104050h pmid:21473571
293 Aramendia M A, Borau V, Garcia I M, Jimenez C, Lafont F, Marinas A, Marinas J M, Urbano F J. Influence of the reaction conditions and catalytic properties on the liquid-phase hydrodechlorination of chlorobenzene over palladium-supported catalysts: activity and deactivation. Journal of Catalysis , 1999, 187(2): 392–399
doi: 10.1006/jcat.1999.2632
294 Soares O, Orfao J J M, Pereira M F R. Nitrate reduction catalyzed by Pd-Cu and Pt-Cu supported on different carbon materials. Catalysis Letters , 2010, 139(3-4): 97–104
doi: 10.1007/s10562-010-0424-y
295 Chen H, Xu Z Y, Wan H Q, Zheng J Z, Yin D Q, Zheng S R. Aqueous bromate reduction by catalytic hydrogenation over Pd/Al2O3 catalysts. Applied Catalysis B: Environmental , 2010, 96(3-4): 307–313
doi: 10.1016/j.apcatb.2010.02.021
[1] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[2] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[3] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[4] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[5] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
[6] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[7] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[8] Tiezheng Tong, Kenneth H. Carlson, Cristian A. Robbins, Zuoyou Zhang, Xuewei Du. Membrane-based treatment of shale oil and gas wastewater: The current state of knowledge[J]. Front. Environ. Sci. Eng., 2019, 13(4): 63-.
[9] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
[10] Wenjing Lu, Yawar Abbas, Muhammad Farooq Mustafa, Chao Pan, Hongtao Wang. A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds[J]. Front. Environ. Sci. Eng., 2019, 13(2): 30-.
[11] Huang Huang, Jie Wu, Jian Ye, Tingjin Ye, Jia Deng, Yongmei Liang, Wei Liu. Occurrence, removal, and environmental risks of pharmaceuticals in wastewater treatment plants in south China[J]. Front. Environ. Sci. Eng., 2018, 12(6): 7-.
[12] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[13] Akshay Jain, Zhen He. “NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions[J]. Front. Environ. Sci. Eng., 2018, 12(4): 1-.
[14] Gang Guo, Yayi Wang, Tianwei Hao, Di Wu, Guang-Hao Chen. Enzymatic nitrous oxide emissions from wastewater treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 10-.
[15] Maocong Hu, Yin Liu, Zhenhua Yao, Liping Ma, Xianqin Wang. Catalytic reduction for water treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 3-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed