Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (6) : 836-843    https://doi.org/10.1007/s11783-013-0513-4
RESEARCH ARTICLE
Removal of sulfadiazine from aqueous solution on kaolinite
Jian XU1,2, Yan HE1,2,3, Yuan ZHANG1,2(), Changsheng GUO1,2, Lei LI1,2, Yuqiu WANG3
1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 2. Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 3. College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
 Download: PDF(158 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The adsorption of sulfadiazine onto kaolinite clay as an alternative adsorbent was examined in aqueous solution. Impacts of the contact time, pH, temperature, ionic strength and coexistent surfactants on the adsorption process were evaluated. The pH significantly influenced the adsorption process, with adsorption being promoted at lower pH due to the cation exchange mechanism. Decreasing ionic strength in the solution was favorable for adsorption, and the addition of cationic and anionic surfactants had negative effects on the adsorption capacity of sulfadiazine on kaolinite. Kinetic experiments showed that the adsorption followed the pseudo-second-order model. The equilibrium adsorption was well described by both Freundlich and Dubinin-Radushkevich (DR) models. According to the DR model, the adsorption mechanism was determined by cationic exchange and weak physical forces. The thermodynamic study showed that sulfadiazine adsorption onto kaolinite was a spontaneous and endothermic reaction.

Keywords adsorption      kaolinite      sulfadiazine      kinetics     
Corresponding Author(s): ZHANG Yuan,Email:zhangyuan@craes.org.cn   
Issue Date: 01 December 2013
 Cite this article:   
Jian XU,Yan HE,Yuan ZHANG, et al. Removal of sulfadiazine from aqueous solution on kaolinite[J]. Front Envir Sci Eng, 2013, 7(6): 836-843.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0513-4
https://academic.hep.com.cn/fese/EN/Y2013/V7/I6/836
Fig.1  Effect of contact time on sulfadiazine adsorption to kaolinite
kinetic modelsparametersvalues
pseudo-first-order modelk1/min-10.077
q1/(mg·g-1)2.024
R20.681
pseudo-second-order modelk2/(g·mg-1·min-1)1.675
q2/(mg·g-1)2.096
R20.999
Weber-Morris modelkp /(mg·g-1·min-1/2)0.061
I/(mg·g-1)1.771
R20.914
Tab.1  Kinetic parameters for sulfadiazine adsorption onto kaolinite
Fig.2  pH effect on sulfadiazine adsorption to kaolinite
Fig.3  Adsorption isotherms of sulfadiazine on kaolinite at different temperatures (: the equilibrium concentration, mmol·L; : the amount of adsorbed drug, mmol·g)
temperature/KLangmuir equationFreundlich equationDR equation
R2Cm/(mmol·g-1)L/(g·L-1)R2Kf/(mmol·g-1)nfR2Xm × 103/(mol·g-1)k/(mol2·kJ-2)E/(kJ·mol-1)
2880.6440.3181.8740.9910.6381.0240.9982.3180.0078.452
2980.8540.0988.1120.9900.3861.1660.9931.4160.0069.129
3080.9600.06814.6470.9950.3101.2940.9960.9620.00510.000
Tab.2  Isotherm parameters for sulfadiazine adsorption onto kaolinite
T/KKd?G/(kJ·mol-1)?S/(kJ·mol-1·K-1)?H/(kJ·mol-1)
2881.112-0.25425.5827.106
2981.242-0.537
3081.348-0.765
Tab.3  Thermodynamic parameters for sulfadiazine adsorption onto kaolinite
Fig.4  Effect of ionic strength on sulfadiazine adsorption to kaolinite(: the equilibrium concentration, mmol·L; : the amount of adsorbed drug, mmol·g)
Fig.5  Effect of surfactants on sulfadiazine adsorption to kaolinite: (a) SDBS; (b) CTAB
1 Boxall A B A, Fogg L A, Blackwell P A, Blackwell P, Kay P, Pemberton E J, Croxford A. Veterinary medicines in the environment. Reviews of Environmental Contamination and Toxicology , 2004, 180(0): 1–91
doi: 10.1007/0-387-21729-0_1ww pmid:14561076
2 Ingerslev F, Halling-S?rensen B. Biodegradability properties of sulfonamides in activated sludge. Environmental Toxicology and Chemistry , 2000, 19(10): 2467–2473
doi: 10.1002/etc.5620191011
3 Pérez S, Eichhorn P, Aga D S. Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environmental Toxicology and Chemistry , 2005, 24(6): 1361–1367
doi: 10.1897/04-211R.1 pmid:16117111
4 Daughton C G, Ternes T A. Pharmaceuticals and personal care products in the environment: agents of subtle change? Environmental Health Perspectives , 1999, 107(Suppl 6): 907–938
doi: 10.1289/ehp.99107s6907 pmid:10592150
5 Zuccato E, Calamari D, Natangelo M, Fanelli R. Presence of therapeutic drugs in the environment. Lancet , 2000, 355(9217): 1789–1790
doi: 10.1016/S0140-6736(00)02270-4 pmid:10832833
6 Dodd M C, Huang C H. Transformation of the antibacterial agent sulfamethoxazole in reactions with chlorine: kinetics, mechanisms, and pathways. Environmental Science & Technology , 2004, 38(21): 5607–5615
doi: 10.1021/es035225z pmid:15575279
7 Huber M M, G?bel A, Joss A, Hermann N, L?ffler D, McArdell C S, Ried A, Siegrist H, Ternes T A, von Gunten U. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environmental Science & Technology , 2005, 39(11): 4290–4299
doi: 10.1021/es048396s pmid:15984812
8 Homem V, Santos L. Degradation and removal methods of antibiotics from aqueous matrices—a review. Journal of Environmental Management , 2011, 92(10): 2304–2347
doi: 10.1016/j.jenvman.2011.05.023 pmid:21680081
9 Hu L, Flanders P M, Miller P L, Strathmann T J. Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis. Water Research , 2007, 41(12): 2612–2626
doi: 10.1016/j.watres.2007.02.026 pmid:17433403
10 Guo C S, Xu J, Zhang Y, He Y. Hierarchical mesoporous TiO2 microspheres for the enhanced photocatalytic oxidation of sulfonamides and their mechanism. RSC Advances , 2012, 2(11): 4720–4727
doi: 10.1039/c2ra01164f
11 Sannino F, De Martino A, Pigna M, Violante A, Di Leo P, Mesto E, Capasso R. Sorption of arsenate and dichromate on polymerin, Fe(OH)x-polymerin complex and ferrihydrite. Journal of Hazardous Materials , 2009, 166(2-3): 1174–1179
doi: 10.1016/j.jhazmat.2008.12.015 pmid:19153008
12 Cooper C, Burch R. Mesoporous materials for water treatment processes. Water Research , 1999, 33(18): 3689–3694
doi: 10.1016/S0043-1354(99)00095-0
13 Mane V S, Deo Mall I, Chandra Srivastava V. Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash. Journal of Environmental Management , 2007, 84(4): 390–400
doi: 10.1016/j.jenvman.2006.06.024 pmid:17000044
14 Karaogˇlu M H, Dogˇan M, Alkan M. Removal of reactive blue 221 by kaolinite from aqueous solutions. Industrial & Engineering Chemistry Research , 2010, 49(4): 1534–1540
doi: 10.1021/ie9017258
15 Sukul P, Lamsh?ft M, Zühlke S, Spiteller M. Sorption and desorption of sulfadiazine in soil and soil-manure systems. Chemosphere , 2008, 73(8): 1344–1350
doi: 10.1016/j.chemosphere.2008.06.066 pmid:18706672
16 Dogˇan M, Alkan M, Onganer Y. Adsorption of methylene blue from aqueous solutions onto perlite. Water, Air, and Soil Pollution , 2000, 120(3-4): 229–248
doi: 10.1023/A:1005297724304
17 Khaled A, Nemr A E, El-Sikaily A, Abdelwahab O. Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: adsorption isotherm and kinetic studies. Journal of Hazardous Materials , 2009, 165(1-3): 100–110
doi: 10.1016/j.jhazmat.2008.09.122 pmid:19013711
18 Seki Y, Yurdakoc K. Equilibrium, kinetics and thermodynamic aspects of Promethazine hydrochloride sorption by iron rich smectite. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2009, 340(1-3): 143–148
doi: 10.1016/j.colsurfa.2009.03.020
19 Svilovi? S, Ru?i? D, Ba?i? A. Investigations of different kinetic models of copper ions sorption on zeolite 13X. Desalination , 2010, 259(1-3): 71–75
doi: 10.1016/j.desal.2010.04.033
20 Unuabonah E I, Adebowale K O, Olu-Owolabi B I. Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay. Journal of Hazardous Materials , 2007, 144(1-2): 386–395
doi: 10.1016/j.jhazmat.2006.10.046 pmid:17156914
21 Nandi B K, Goswami A, Purkait M K. Removal of cationic dyes from aqueous solutions by kaolin: kinetic and equilibrium studies. Applied Clay Science , 2009, 42(3-4): 583–590
doi: 10.1016/j.clay.2008.03.015
22 White R E. Introduction to the Principles of Soil Science. 2nd ed. Boston: Blackwell, 1987
23 Alkan M, Demirbas ?, Do?ganM. Electrokinetic properties of kaolinite in mono- and multivalent electrolyte solutions. Microporous and Mesoporous Materials , 2005, 83(1-3): 51–59
doi: 10.1016/j.micromeso.2005.03.011
24 Kurwadkar S T, Adams C D, Meyer M T, Kolpin D W. Effects of sorbate speciation on sorption of selected sulfonamides in three loamy soils. Journal of Agricultural and Food Chemistry , 2007, 55(4): 1370–1376
doi: 10.1021/jf060612o pmid:17300155
25 Horváth C, Melander W, Molnár I . Solvophobic interactions in liquid chromatography with nonpolar stationary phases. Journal of Chromatography A , 1976, 125(1): 129–156
doi: 10.1016/S0021-9673(00)93816-0
26 Fábrega J R, Jafvert C T, Li H, Lee L S. Modeling short-term soil-water distribution of aromatic amines. Environmental Science & Technology , 1998, 32(18): 2788–2794
doi: 10.1021/es9802394
27 Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society , 1918, 40(9): 1361–1403
doi: 10.1021/ja02242a004
28 Lazaridis N K, Asouhidou D D. Kinetics of sorptive removal of chromium(VI) from aqueous solutions by calcined Mg-Al-CO(3) hydrotalcite. Water Research , 2003, 37(12): 2875–2882
doi: 10.1016/S0043-1354(03)00119-2 pmid:12767290
29 Hasany S M, Ahmad R. The potential of cost-effective coconut husk for the removal of toxic metal ions for environmental protection. Journal of Environmental Management , 2006, 81(3): 286–295
doi: 10.1016/j.jenvman.2006.01.009 pmid:16713064
30 Vaishya R C, Gupta S K. Modelling arsenic(III) adsorption from water by sulfate-modified iron oxide-coated sand (SMIOCS). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 2003, 78(1): 73–80
doi: 10.1002/jctb.745
31 Shaw D J. Introduction to Colloid and Surfaces Chemistry. 4th ed. Oxford: Butterworth-Heinemann, 1992
32 Jain C K, Sharma M K. Adsorption of cadmium on bed sediments of river Hindon: adsorption models and kinetics. Water, Air, and Soil Pollution , 2002, 137(1-4): 1–19
doi: 10.1023/A:1015530702297
33 Ho Y S. Removal of copper ions from aqueous solution by tree fern. Water Research , 2003, 37(10): 2323–2330
doi: 10.1016/S0043-1354(03)00002-2 pmid:12727241
34 Messina P V, Schulz P C. Adsorption of reactive dyes on titania-silica mesoporous materials. Journal of Colloid and Interface Science , 2006, 299(1): 305–320
doi: 10.1016/j.jcis.2006.01.039 pmid:16563420
35 Wu W S, Fan Q H, Xu J Z, Niu Z W, Lu S S. Sorption-desorption of Th(IV) on attapulgite: effects of pH, ionic strength and temperature. Applied radiation and isotopes , 2007, 65(10): 1108–1114
doi: 10.1016/j.apradiso.2007.05.009 pmid:17604176
36 ?zdemir Y, D?gan M, Alkan M. Adsorption of cationic dyes from aqueous solutions by sepiolite. Microporous and Mesoporous Materials , 2006, 96(1-3): 419–427
doi: 10.1016/j.micromeso.2006.07.026
37 Ying G G. Fate, behavior and effects of surfactants and their degradation products in the environment. Environment International , 2006, 32(3): 417–431
doi: 10.1016/j.envint.2005.07.004 pmid:16125241
38 Xu J, Yuan X, Dai S G. Effect of surfactants on desorption of aldicarb from spiked soil. Chemosphere , 2006, 62(10): 1630–1635
doi: 10.1016/j.chemosphere.2005.06.040 pmid:16111737
39 Pan G, Jia C X, Zhao D Y, You C, Chen H, Jiang G B. Effect of cationic and anionic surfactants on the sorption and desorption of perfluorooctane sulfonate (PFOS) on natural sediments. Environmental Pollution , 2009, 157(1): 325–330
doi: 10.1016/j.envpol.2008.06.035 pmid:18722698
40 Haigh S D. A review of the interaction of surfactants with organic contaminants in soil. Science of the Total Environment , 1996, 185(1-3): 161–170
doi: 10.1016/0048-9697(95)05049-3
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[4] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[5] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[6] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
[7] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[8] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[9] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[10] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[11] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[12] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[13] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[14] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[15] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed