Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (6) : 795-802    https://doi.org/10.1007/s11783-013-0521-4
REVIEW ARTICLE
Review on research and application of mesoporous transitional metal oxides in water treatment
Minghao SUI(), Lei SHE
State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
 Download: PDF(165 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reviews the application of mesoporous transitional metal oxides in water treatment on basis of the catalysis and adsorption. Mesoporous transitional metal oxides are characterized by their intrinsic features, such as a high surface area, a highly ordered array of unidimensional pores with a very narrow pore size distribution, and highly dispersed active sites. Finally, the suggestions of further study on application are proposed.

Keywords mesoporous materials      transitional metal oxides      catalysis      adsorption      water treatment     
Corresponding Author(s): SUI Minghao,Email:suiminghao.sui@gmail.com   
Issue Date: 01 December 2013
 Cite this article:   
Minghao SUI,Lei SHE. Review on research and application of mesoporous transitional metal oxides in water treatment[J]. Front Envir Sci Eng, 2013, 7(6): 795-802.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0521-4
https://academic.hep.com.cn/fese/EN/Y2013/V7/I6/795
materialSBET/(m2·g-1)Vp/(cm3·g-1)preparation methodapplicable processRef.
Fe2O388-hard template methodadsorption11, 12
Fe3O448--catalytic peroxide oxidation13
Cr2O3980.13hard template methodcatalytic peroxide oxidation14
Mn2O3118-1220.32-0.35hard template methodcatalytic ozonation15
CeO2-ZrO282.60.11hydrothermal methodadsorption16
ZrO2210-soft template methodcatalytic ozonation17
Sol-gel methodadsorption18
TiO2110-1590.12-0.24Sol-gel methodcatalytic ozonation19
Solvothermal methodphotocatalysis20
Sol-gel methodphotocatalysis21, 22
soft template methodphotocatalysis23
hydrothermal methodadsorption24, 25
Tab.1  The applications of mesoporous transitional metal oxides in water treatment
Fig.1  Proposed mechanism of the degradation for -nitrophenol by nano-FeO []
Fig.2  Scheme illustrating the proposed catalytic ozonation pathway []
typecatalytic peroxide oxidationcatalytic ozonationphotocatalysis
catalystFe3O4PWA-Cr2O3Mn2O3TiO2CoOx-ZrO2By UVBy Vis
TiO2
SBET/(m2·g-1)4867-80118-12240.13210159.4-
Targets/(mg·L-1)25-45p-nitrophenol4880benzyl alcohol200benzene0.060nitrobenzene802,4-dichlorophenoxyacetic acid20bisphenol A10methyl orange
efficiency90%/10 h80%/2 h80%/-60%/0.33h90%/0.6 h90%/1 h96%/0.33 h
pH rangeneutral--basic4-10-Acid
Ref.13141519172023
Tab.2  Catalytic data of different mesoporous transition metal oxides
Fig.3  (a) The effect of PWA loading amounts on the catalytic peroxide oxidation []; (b) the effect of calcination temperature on the catalytic ozonation []
adsorbentadsorption capacity/(mg·g-1)equilibrium time/hRef.
activated carbon15.4710-5036
diatomite11.55-37
Fe2O315.60.3311
TiO223.00.524
CeO2-ZrO29.630.3316
Tab.3  Adsorption capacity of mesoporous transition metal oxides on Cr(VI)
1 Lowell S, Shields J E. Powder Surface Area and Porosity. London: Chapman & Hall, 1998
2 Davis M E. Organizing for better synthesis. Nature , 1993, 364(6436): 391-393
doi: 10.1038/364391a0
3 Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu T W, Olson D H, Sheppard E W. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society , 1992, 114(27): 10834-10843
doi: 10.1021/ja00053a020
4 Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature , 1992, 359(6397): 710-712
doi: 10.1038/359710a0
5 Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society , 1998, 120(24): 6024-6036
doi: 10.1021/ja974025i
6 Joo S H, Ryoo R, Kruk M, Jaroniec M. Evidence for general nature of pore interconnectivity in 2-dimensional hexagonal mesoporous silicas prepared using block copolymer templates. The Journal of Physical Chemistry B , 2002, 106(18): 4640-4646
doi: 10.1021/jp013583n
7 Antonelli D M, Ying J Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method. Angewandte Chemie International Edition in English , 1995, 34(18): 2014-2017
doi: 10.1002/anie.199520141
8 Xia Y S, Dai H X, Jiang H Y, Zhang L, Deng J, Liu Y X. Three-dimensionally ordered and wormhole-like mesoporous iron oxide catalysts highly active for the oxidation of acetone and methanol. Journal of Hazardous Materials , 2011, 186(1): 84-91
doi: 10.1016/j.jhazmat.2010.10.073 pmid:21131127
9 Gao Q X, Wang X F, Wu X C, Tao Y R, Zhu J J. Mesoporous zirconia nanobelts: Preparation, characterization and applications in catalytical methane combustion. Microporous and Mesoporous Materials , 2011, 143(2): 333-340
doi: 10.1016/j.micromeso.2011.03.019
10 Huo Q S, Margolese D I, Ciesla U, Demuth DG, Feng P Y, Gier T E, Sieger P, Firouzi A, Chmelka B F. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chemistry of Materials , 1994, 6(8): 1176-1191
doi: 10.1021/cm00044a016
11 Wang P, Lo I M. Synthesis of mesoporous magnetic γ-Fe2O3 and its application to Cr(VI) removal from contaminated water. Water Research , 2009, 43(15): 3727-3734
doi: 10.1016/j.watres.2009.05.041 pmid:19559458
12 Wu Z S, Zhang W M, Sui Z X. Surface complexation constants of mesoporous Fe2O3. Acta Chimica Sinica , 2010, 68(8): 769-774 (in Chinese)
13 Sun S P, Lemley A T. p-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: process optimization, kinetics, and degradation pathways. Journal of Molecular Catalysis A: Chemical , 2011, 349(1): 71-79
doi: 10.1016/j.molcata.2011.08.022
14 Tamiolakis I, Lykakis I N, Katsoulidis A P, Malliakas C D, Armatas G S. Ordered mesoporous Cr2O3 frameworks incorporating Keggin-type 12-phosphotungstic acids as efficient catalysts for oxidation of benzyl alcohols. Journal of Materials Chemistry , 2012, 22(14): 6919-6927
doi: 10.1039/c2jm16390j
15 Jin M S, Kim J W, Kim J M, Jurng J S, Bae G N, Jeon J K, Park Y K. Effect of calcination temperature on the oxidation of benzene with ozone at low temperature over mesoporous α-Mn2O3. Powder Technology , 2011, 214(3): 458-462
doi: 10.1016/j.powtec.2011.08.046
16 Xiao T, Yang C, Tian X K. Research on the preparation of mesoporous CeO2-ZrO2 and its adsorption of Cr6+ in water. Nanoscience & Nanotechnology , 2009, 6: 11-15 (in Chinese)
17 Hu C, Xing S T, Qu J H, He H. Catalytic ozonation of herbicide 2,4-D over cobalt oxide supported on mesoporous zirconia. Journal of Physical Chemistry C , 2008, 112(15): 5978-5983
doi: 10.1021/jp711463e
18 Yu D Z, Deng Z S, Zheng M M, Cai R X. Preparation of nano-zirconium dioxide and its property of adsorbing dyestuff. Environmental Science & Technology , 2004, 27: 75-76 (in Chinese)
doi: 10.3969/j.issn.1003-6504.2004.01.033
19 Yang Y X, Ma J, Qin Q D, Zhai X D. Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation. Journal of Molecular Catalysis A Chemical , 2007, 267(1): 41-48
doi: 10.1016/j.molcata.2006.09.010
20 Guo C S, Ge M, Liu L, Gao G D, Feng Y C, Wang Y Q. Directed synthesis of mesoporous TiO2 microspheres: catalysts and their photocatalysis for bisphenol A degradation. Environmental Science & Technology , 2010, 44(1): 419-425
doi: 10.1021/es9019854 pmid:19928897
21 Wang G Q. Preparation of mesoporous TiO2 photocatalyst and photocatalytic degradation of organic dye. Environmental Pollution & Control , 2008, 30: 1-3 (in Chinese)
doi: 10.3969/j.issn.1001-3865.2008.03.002
22 Iwasaki M, Hara M, Kawada H, Tada H, Ito S. Cobalt ion-doped TiO2 photocatalyst response to visible light. Journal of Colloid and Interface Science , 2000, 224(1): 202-204
doi: 10.1006/jcis.1999.6694 pmid:10708511
23 Hu Q H, Zhang W P, Liu L Q, Tao C Y, Yang Q Y. Degradation of methyl orange catalyzed by Fe3+-doped mesoporous TiO2. Industrial Catalysis , 2009, 17: 66-71 (in Chinese)
doi: 10.3969/j.issn.1008-1143.2009.08.014
24 Xiang W C, Hu P, Zhang X, Yao M S, Xu R F, Yuan F L. Synthesis of porous TiO2 hollow spheres by hydrothermal method and their adsorption property to Cr(VI). The Chinese Journal of Process Engineering , 2011, 11: 678-683 (in Chinese)
25 Pérez León C, Kador L, Peng B, Thelakkat M. Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV-Vis, Raman, and FTIR Spectroscopies. The Journal of Physical Chemistry B , 2006, 110(17): 8723-8730
doi: 10.1021/jp0561827
26 Lei J H, Xiong H C, Chen Y X. Non-siliceous mesoporous materials and their applications. Journal of the Chinese Ceramic Society , 2004, 32: 1003-1007 (in Chinese)
27 Pignatello J J, Oliveros E, Mackay AAdvanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology , 2006, 36(1): 1-84
doi: 10.1080/10643380500326564
28 Chen J X, Zhu L Z. Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite. Catalysis Today , 2007, 126(3-4): 463-470
doi: 10.1016/j.cattod.2007.06.022
29 Legube B, Karpel V L N. Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catalysis Today , 1999, 53(1): 61-72
doi: 10.1016/S0920-5861(99)00103-0
30 Thomas J M, Thomas W J, Anderson J R, Boudart M. Principles and Practice of Heterogeneous Catalysis. Weinheim: VCH, 1997
31 Yu J C, Wang X C, Fu X Z. Pore-wall chemistry and photocatalytic activity of mesoporous titania molecular sieve films. Chemistry of Materials , 2004, 16(8): 1523-1530
doi: 10.1021/cm049955x
32 Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews , 1995, 95(3): 735-758
doi: 10.1021/cr00035a013
33 Wu S J, Li F T, Zhang B R. Research progress in the application of mesoporous adsorbent to the field of water treatment. Industrial Water Treatment , 2010, 30: 1-4 (in Chinese)
doi: 10.3969/j.issn.1005-829X.2010.04.001
34 Zhou D H, Li X Y, Xu F L. Some experimental problems related to distinguishing specific adsorption from non-specific adsorption of heavy metal on the surface of oxides. Acta Pedologica Sinica , 1997, 34: 348-351 (in Chinese)
35 Lata H, Garg V K, Gupta R K. Adsorptive removal of basic dye by chemically activated Parthenium biomass: equilibrium and kinetic modeling. Desalination , 2008, 219(1-3): 250-261
doi: 10.1016/j.desal.2007.05.018
36 Babel S, Kurniawan T A. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere , 2004, 54(7): 951-967
doi: 10.1016/j.chemosphere.2003.10.001 pmid:14637353
37 De Castro Dantas T N, Neto A A D, De A. Moura M C P. Removal of chromium from aqueous solutions by diatomite treated with microemulsion. Water Research , 2001, 35(9): 2219-2224
doi: 10.1016/S0043-1354(00)00507-8 pmid:11358301
38 Kang M, Choung S, Park J Y. Photocatalytic performance of nanometersized FexOy/TiO2 particle synthesized by hydrothermal method. Catalysis Today , 2003, 87(1-4): 87-97
doi: 10.1016/j.cattod.2003.09.011
39 Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Gratzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature , 1998, 395(6702): 583-585
doi: 10.1038/26936
40 Lee K, Park S W, Ko M J, Kim K, Park N G. Selective positioning of organic dyes in a mesoporous inorganic oxide film. Nature Materials , 2009, 8(8): 665-671
doi: 10.1038/nmat2475 pmid:19561600
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[4] Violeta Makareviciene, Egle Sendzikiene, Ieva Gaide. Application of heterogeneous catalysis to biodiesel synthesis using microalgae oil[J]. Front. Environ. Sci. Eng., 2021, 15(5): 97-.
[5] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[6] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[7] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[8] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[9] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[10] Yang Yang. Recent advances in the electrochemical oxidation water treatment: Spotlight on byproduct control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 85-.
[11] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[12] Haiyan Yang, Shangping Xu, Derek E. Chitwood, Yin Wang. Ceramic water filter for point-of-use water treatment in developing countries: Principles, challenges and opportunities[J]. Front. Environ. Sci. Eng., 2020, 14(5): 79-.
[13] Jianfeng Zhou, Ting Wang, Cecilia Yu, Xing Xie. Locally enhanced electric field treatment (LEEFT) for water disinfection[J]. Front. Environ. Sci. Eng., 2020, 14(5): 78-.
[14] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[15] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed