Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (5) : 699-708    https://doi.org/10.1007/s11783-013-0528-x
RESEARCH ARTICLE
Effects of riparian land use on water quality and fish communities in the headwater stream of the Taizi River in China
Sen DING1,2, Yuan ZHANG1,2(), Bin LIU1,2, Weijing KONG1,2, Wei MENG1
1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 2. Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
 Download: PDF(201 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Riparian land use remains one of the most significant impacts on stream ecosystems. This study focuses on the relationship between stream ecosystems and riparian land use in headwater regions. Four riparian land types including forest, grassland, farmland, and residential land were examined to reveal the correlation between stream water and fish communities in headwater streams of the Taizi River in north-eastern China. Four land types along riparian of 3 km in length were evaluated at 25, 50, 100, 200 and 500 m widths, respectively. Generally, the results found a significant relationship between riparian land uses and stream water quality. Grassland was positively correlated with water quality parameters (conductivity and total dissolved solids) at scales from 100 to 500 m riparian width. Farmland and residential land was negatively correlated with water quality parameters at scales from 25 to 500 m and from 50 to 200 m riparian widths, respectively. Although the riparian forest is important for maintaining habitat diversity and fish communities, the results found that only fish communities were significantly correlated with the proportion of riparian farmland. Farmland had a positive correlation with individual fish abundance within a riparian corridor of 25 to 50 m, but a negative correlation with fish diversity metrics from 25 to 100 m. This study indicates that effective riparian management can improve water quality and fish communities in headwater streams.

Keywords fish      water quality      land use      riparian buffer      headwater stream     
Corresponding Author(s): ZHANG Yuan,Email:zhangyuan@craes.org.cn   
Issue Date: 01 October 2013
 Cite this article:   
Sen DING,Yuan ZHANG,Bin LIU, et al. Effects of riparian land use on water quality and fish communities in the headwater stream of the Taizi River in China[J]. Front Envir Sci Eng, 2013, 7(5): 699-708.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0528-x
https://academic.hep.com.cn/fese/EN/Y2013/V7/I5/699
Fig.1  Location of sampling sites in the Taizi southern stream (TS) and the Xiaotang stream (XT) in the Liao River, China
indexmeanstandard deviationminimummaximum
water quality
pH9.020.528.2010.12
EC /(μs·cm-1)84.9350.0025.80176.10
TDS /(mg·L-1)67.5436.4723.40139.10
DO /(mg·L-1)11.781.379.2213.78
TN /(mg·L-1)3.492.540.446.72
TP /(mg·L-1)0.060.090.010.36
CODMn /(mg·L-1)1.600.890.503.70
Ammonia-N /(mg·L-1)0.250.160.040.63
fish community
S4.551.712.009.00
N/(ind.)107.7873.2223.00343.00
H1.150.550.032.25
J0.530.210.030.92
Tab.1  General water quality characteristics and fish community metrics of the headwaters in the Taizi River catchment during May to September 2010
family – speciesN (ind.)A /%F /%indicator species valuep value
Cyprinidae
Zacco platypus (Temminck et Schlegel)542.2822.7328.60.19
Phoxinus lagowskii (Dybowski)177874.99100.0052.40.29
Pseudorasbora parva (Temminck et Schlegel)120.5122.7316.20.74
Squalidus chankaensis (Dybowski)10.044.5510.00.46
S. wolterstorffi (Regan)200.8413.6425.00.22
Abbottina rivularis (Basilewsky)261.1013.6430.00.07
Abbottina liaoningensis30.139.096.60.75
Carassius auratus (Linnaeus)50.214.558.31.00
Cobitidae
Nemachilus nudus (Bleeker)1064.4772.7349.80.25
Lefua costata (Kessler)10.044.5510.00.46
Cobitis granoei (Rendahl)311.3154.5562.90.01
Misgurnus anguillicaudatus (Cantor)150.6322.7312.01.00
Gasterosteidae
Pungitius sinensis (Guichenot)30.134.5510.00.46
Eleotridae
Odontobutis obscura (Temminck et Schlegel)2339.8359.0945.20.22
Hypseleotris swinhonis (Günther)20.084.5510.00.44
Cottidae
Cottus poecilopus (Heckel)813.4240.9175.00.00
Tab.2  Fish assemblage structure and indicator species of the headwaters in the Taizi River catchment during May to September 2010
Fig.2  Percentage of different land uses within five riparian buffer widths at 25, 50, 100, 200 and 500 m, respectively
parameterfarmlandresidential landforestgrassland
25 m50 m100 m200 m500 m25 m50 m100 m200 m500 m25 m50 m100 m200 m500 m25 m50 m100 m200 m500 m
pH0.52*0.54**0.58**0.54**0.410.260.330.390.360.14-0.29-0.33-0.35-0.32-0.25-0.20-0.25-0.30-0.30-0.26
DO/(mg·L-1)-0.20-0.17-0.040.140.21-0.03-0.03-0.03-0.000.22-0.13-0.16-0.20-0.23-0.260.370.400.390.360.34
EC/(s·cm-1)0.51*0.56**0.62**0.62**0.58**0.290.390.47*0.47*0.19-0.36-0.37-0.37-0.36-0.35-0.33-0.39-0.44*-0.47*-0.44*
TDS/( mg·L-1)0.48*0.54*0.61**0.63**0.59**0.280.400.48*0.49*0.20-0.38-0.39-0.38-0.37-0.37-0.33-0.38-0.44*-0.46*-0.44*
TN/( mg·L-1)0.51*0.55**0.57**0.52*0.390.340.400.42*0.380.12-0.39-0.40-0.37-0.32-0.24-0.18-0.26-0.33-0.35-0.34
TP/( mg·L-1)-0.070.030.190.330.42*0.190.320.350.330.17-0.22-0.21-0.25-0.28-0.33-0.15-0.18-0.22-0.24-0.24
CODMn/( mg·L-1)0.270.280.320.310.290.190.320.420.44*0.15-0.36-0.35-0.34-0.30-0.22-0.19-0.19-0.21-0.20-0.26
NH3-N/( mg·L-1)0.040.080.160.310.400.340.44*0.48*0.390.26-0.15-0.18-0.21-0.26-0.32-0.19-0.19-0.17-0.15-0.10
Tab.3  Pearson’s correlation between four land use types and water quality parameters
farmlandresidential landforestgrassland
25 m50 m100 m200 m500 m25 m50 m100 m200 m500 m25 m50 m100 m200 m500 m25 m50 m100 m200 m500 m
S-0.30-0.27-0.22-0.050.22-0.110.080.200.170.09-0.29-0.25-0.22-0.24-0.34-0.010.030.080.090.10
N/(ind.)0.68**0.65**0.57**0.34-0.010.07-0.01-0.06-0.05-0.05-0.20-0.23-0.20-0.100.09-0.20-0.21-0.21-0.18-0.16
H-0.46*-0.42*-0.32-0.080.29-0.010.200.320.290.15-0.16-0.12-0.11-0.17-0.36-0.02-0.010.00-0.030.00
J-0.52*-0.49*-0.39-0.160.200.070.220.300.280.160.030.070.05-0.03-0.230.030.01-0.02-0.08-0.07
Tab.4  Pearson’s correlation between four land use types and fish community metrics
F valuep value
N4.300.02
H0.300.59
J0.420.52
Tab.5  Summary of intercept test of linear regressions between farmland and fish community metrics by ANCOCA
Fig.3  Linear regressions between farmland percentages versus fish metrics. (a) farmland percentages and ; (b) farmland percentages and ; (c) farmland percentages and
1 Wang L, Lyons J, Kanehl P, Gatti R. Influences of watershed land use on habitat quality and biotic integrity in Wisconsin stream. Fisheries (Bethesda, Md.) , 1997, 22(6): 6-12
doi: 10.1577/1548-8446(1997)022<0006:IOWLUO>2.0.CO;2
2 Lammert M, Allan J D. Environmental auditing: assessing biotic integrity of streams: effects of scale in measuring the influence of land use/cover and habitat structure on fish and macroinvertebrates. Environmental Management , 1999, 23(2): 257-270
doi: 10.1007/s002679900184 pmid:9852191
3 Allan J D. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology Evolution and Systematics , 2004, 35(1): 257-284
doi: 10.1146/annurev.ecolsys.35.120202.110122
4 Jones E B D, Helfman G S, Harper J O, Bolstad P V. Effects of riparian forest removal on fish assemblages in southern Appalachian streams. Conservation Biology , 1999, 13(6): 1454-1465
5 Wright J P, Flecker A S. Deforesting the riverscape: the effects of wood on fish diversity in a Venezuelan piedmont stream. Biological Conservation , 2004, 120(3): 443-451
doi: 10.1016/j.biocon.2004.02.022
6 Diamond J M, Bressler D W, Serveiss V B. Assessing relationships between human land uses and the decline of native mussels, fish, and macroinvertebrates in the Clinch and Powell River watershed, USA. Environmental toxicology and chemistry / SETAC , 2002, 21(6): 1147-1155
doi: 10.1002/etc.5620210606 pmid:12069297
7 Meyer J L, Strayer D L, Wallace J B, Eggert S L, Helfman G S, Leonard N E. The contribution of headwater streams to biodiversity in river networks. Journal of the American Water Resources Association , 2007, 43(1): 86-103
doi: 10.1111/j.1752-1688.2007.00008.x
8 Richardson J S, Danehy R J. A synthesis of the ecology of headwater streams and their riparian zones in temperate forests. Forest Science , 2007, 53(2): 131-147
9 Wipfli M S, Richardson J S, Naiman R J. Ecological linkages between headwaters and downstream ecosystems: transport of organic matter, invertebrates, and wood down headwater channels. Journal of the American Water Resources Association , 2007, 43(1): 72-85
doi: 10.1111/j.1752-1688.2007.00007.x
10 Allan J D, Erickson D L, Fay J. The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology , 1997, 37(1): 149-161
doi: 10.1046/j.1365-2427.1997.d01-546.x
11 Wang L, Lyons J, Kanehl P, Bannerman R. Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environmental Management , 2001, 28(2): 255-266
doi: 10.1007/s0026702409 pmid:11443388
12 Snelder T H, Biggs B J F. Multiscale river environment classification for water resources management. Journal of the American Water Resources Association , 2002, 38(5): 1225-1239
doi: 10.1111/j.1752-1688.2002.tb04344.x
13 Greenwood M J, Harding J S, Niyogi D K, McIntosh A R. Improving the effectiveness of riparian management for aquatic invertebrates in a degraded agricultural landscape: stream size and land-use legacies. Journal of Applied Ecology , 2012, 49(1): 213-222
doi: 10.1111/j.1365-2664.2011.02092.x
14 Osborne L L, Kovacic D A. Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwater Biology , 1993, 29(2): 243-258
doi: 10.1111/j.1365-2427.1993.tb00761.x
15 Gregory S V, Swanson F J, McKee W A, Cummins K W. An ecosystem perspective of riparian zones: focus on links between land and water. Bioscience , 1991, 41(8): 540-551
doi: 10.2307/1311607
16 Hughes R M, Howlin S, Kaufmann P R. A biointegrity index (IBI) for coldwater streams of western Oregon and Washington. Transactions of the American Fisheries Society , 2004, 133(6): 1497-1515
doi: 10.1577/T03-146.1
17 Paul M J, Meyer J L. Streams in the urban landscape. Annual Review of Ecology Evolution and Systematics , 2001, 32(1): 333-365
doi: 10.1146/annurev.ecolsys.32.081501.114040
18 Harvey B C. Susceptibility of young-of-the-year fishes to downstream displacement by flooding. Transactions of the American Fisheries Society , 1987, 116(6): 851-855
doi: 10.1577/1548-8659(1987)116<851:SOYFTD>2.0.CO;2
19 Regetz J. Landscape-level constraints on recruitment of Chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin, USA. Aquatic Conservation , 2003, 13(1): 35-49
doi: 10.1002/aqc.524
20 Teresa F B, Romero R M, Casatti L, Sabino J. Fish as indicators of disturbance in streams used for snorkeling activities in a tourist region. Environmental Management , 2011, 47(5): 960-968
doi: 10.1007/s00267-011-9641-4 pmid:21359866
21 Ca?as C M, Pine W E III. Documentation of the temporal and spatial patterns of Pimelodidaecatfish spawning and larvae dispersion in the madre de Dios River (Peru): insights for conservation in the Andean-Amazon headwaters. River Research and Applications , 2011, 27(5): 602-611
doi: 10.1002/rra.1377
22 Scrimgeour G J, Hvenegaard P J, Tchir J. Cumulative industrial activity alters lotic fish assemblages in two boreal forest watersheds of Alberta, Canada. Environmental Management , 2008, 42(6): 957-970
doi: 10.1007/s00267-008-9207-2 pmid:18815827
23 State Environmental Protection Administration & State Administration for Quality Supervision and Inspection and Quarantine. Environmental Quality Standards for Surface Water (GB3838-2002). Beijing: State Environmental Protection Administration & State Administration for Quality Supervision and Inspection and Quarantine, 2002 (in Chinese)
24 Dufrêne M, Legendre P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs , 1997, 67(3): 345-366
25 Keister J E, Peterson W T. Zonal and seasonal variations in zooplankton community structure off the central Oregon coast, 1998-2000. Progress in Oceanography , 2003, 57(3-4): 341-361
doi: 10.1016/S0079-6611(03)00105-8
26 Gburek W J, Folmar G J. Flow and chemical contributions to streamflow in an upland watershed: a baseflow survey. Journal of Hydrology (Amsterdam) , 1999, 217(1-2): 1-18
doi: 10.1016/S0022-1694(98)00282-0
27 Tong S T Y, Chen W. Modeling the relationship between land use and surface water quality. Journal of Environmental Management , 2002, 66(4): 377-393
doi: 10.1006/jema.2002.0593 pmid:12503494
28 Mustapha M K. Influence of watershed activities on the water quality and fish assemblages of a tropical African reservoir. Turkish Journal of Fisheries and Aquatic Sciences , 2009, 9(1): 1-8
doi: 10.4194/tjfas.2009.001
29 Norton M M, Fisher T R. The effects of forest on stream water quality in two coastal plain watersheds of the Chesapeake Bay. Ecological Engineering , 2000, 14(4): 337-362
doi: 10.1016/S0925-8574(99)00060-9
30 Hayakawa A, Shimizu M, Woli K P, Kuramochi K, Hatano R. Evaluating stream water quality through land use analysis in two grassland catchments: impact of wetlands on stream nitrogen concentration. Journal of Environmental Quality , 2006, 35(2): 617-627
doi: 10.2134/jeq2005.0343 pmid:16510707
31 Abell R, Allan J D. Riparian shade and stream temperatures in an agricultural catchment, Michigan, USA. In: Proceedings of the International Association of Theoretical and Applied Limnology Conference, 2001 . Melbourne. Stuttgart: Schweizerbart Science Publishers, 2002, 232-237
32 Nerbonne B A, Vondracek B. Effects of local land use on physical habitat, benthic macroinvertebrates, and fish in the Whitewater River, Minnesota, USA. Environmental Management , 2001, 28(1): 87-99
doi: 10.1007/s002670010209 pmid:11437003
33 Osborne L L, Wiley M J. Empirical relationships between land use/cover and stream water quality in an agricultural watershed. Journal of Environmental Management , 1988, 26(1): 9-27
34 Hefting M, Beltman B, Karssenberg D, Rebel K, van Riessen M, Spijker M. Water quality dynamics and hydrology in nitrate loaded riparian zones in the Netherlands. Environmental pollution (Barking, Essex: 1987) , 2006, 139(1): 143-156
doi: 10.1016/j.envpol.2005.04.023 pmid:15996804
35 US Environmental Protection Agency. National Water Quality Inventory of 1996. Washington DC: US Environmental Protection Agency, 1996
36 Wang L, Lyons J, Kanehi P, Bannerman R, Emmons E. Watershed urbanization and changes in fish communities in southeastern Wisconsin streams. Journal of the American Water Resources Association , 2000, 36(5): 1173-1189
doi: 10.1111/j.1752-1688.2000.tb05719.x
37 Sutherland A B, Meyer J L, Gardiner E P. Effects of land cover on sediment regime and fish assemblage structure in four southern Appalachian streams. Freshwater Biology , 2002, 47(9): 1791-1805
doi: 10.1046/j.1365-2427.2002.00927.x
38 Bourque C P A, Pomeroy J H. Effects of forest harvesting on summer stream temperatures in New Brunswick, Canada: an inter-catchment, multiple-year comparison. Hydrology and Earth System Sciences , 2001, 5(4): 599-614
doi: 10.5194/hess-5-599-2001
39 Arbuckle K E, Downing J A. Freshwater mussel abundance and species richness: GIS relationships with watershed land use and geology. Canadian Journal of Fisheries and Aquatic Sciences , 2002, 59(2): 310-316
doi: 10.1139/f02-006
40 Chapman D W. Critical review of variables used to define effects of fines in redds of large salmonids. Transactions of the American Fisheries Society , 1988, 117(1): 1-21
doi: 10.1577/1548-8659(1988)117<0001:CROVUT>2.3.CO;2
41 Armour C L, Duff D A, Elmore W.The effects of livestock grazing on riparian and stream ecosystems. Fisheries, 1990, 16(1): 7-11
42 Lenat D R, Crawford J K. Effects of land use on water quality and aquatic biota of three North Carolina Piedmont streams. Hydrobiologia , 1994, 294(3): 185-199
doi: 10.1007/BF00021291
43 MeadorM R, GoldsteinR M. Assessing water quality at large geographic scales: relations among land use, water physicochemistry, riparian condition, and fish community structure. Environmental Management , 2003, 31(4): 504-517
doi: 10.1007/s00267-002-2805-5 pmid:12677296
[1] Ziyue Yin, Qing Lin, Shaohui Xu. Using hydrochemical signatures to characterize the long-period evolution of groundwater information in the Dagu River Basin, China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 105-.
[2] Haiyan Yang, Shangping Xu, Derek E. Chitwood, Yin Wang. Ceramic water filter for point-of-use water treatment in developing countries: Principles, challenges and opportunities[J]. Front. Environ. Sci. Eng., 2020, 14(5): 79-.
[3] Isam Alyaseri, Jianpeng Zhou, Susan M. Morgan, Andrew Bartlett. Initial impacts of rain gardens’ application on water quality and quantity in combined sewer: field-scale experiment[J]. Front. Environ. Sci. Eng., 2017, 11(4): 19-.
[4] Yuan XU,Ruqin XIE,Yuqiu WANG,Jian SHA. Spatio-temporal variations of water quality in Yuqiao Reservoir Basin, North China[J]. Front. Environ. Sci. Eng., 2015, 9(4): 649-664.
[5] Yong YU,Laosheng WU. Determination and occurrence of endocrine disrupting compounds, pharmaceuticals and personal care products in fish (Morone saxatilis)[J]. Front. Environ. Sci. Eng., 2015, 9(3): 475-481.
[6] Wendong WANG,Qinghai FAN,Zixia QIAO,Qin YANG,Yabo WANG,Xiaochang WANG. Effects of water quality on the coagulation performances of humic acids irradiated with UV light[J]. Front. Environ. Sci. Eng., 2015, 9(1): 147-154.
[7] Xiaomao WANG,Hongwei YANG,Zhenyu LI,Shaoxia YANG,Yuefeng XIE. Pilot study for the treatment of sodium and fluoride-contaminated groundwater by using high-pressure membrane systems[J]. Front. Environ. Sci. Eng., 2015, 9(1): 155-163.
[8] Hong CHEN,Feng XIAO,Zhe BI,Ping XIAO,Dongsheng WANG,Ming YANG. Practical evaluation for water utilities in China by using analytic hierarchy process[J]. Front. Environ. Sci. Eng., 2015, 9(1): 131-137.
[9] Xue LI,Pengjing LI,Dong WANG,Yuqiu WANG. Assessment of temporal and spatial variations in water quality using multivariate statistical methods: a case study of the Xin'anjiang River, China[J]. Front. Environ. Sci. Eng., 2014, 8(6): 895-904.
[10] WEI Yimei,ZHANG Yuan,XU Jian,GUO Changsheng,LI Lei,FAN Wenhong. Simultaneous quantification of several classes of antibiotics in water, sediments, and fish muscles by liquid chromatography–tandem mass spectrometry[J]. Front.Environ.Sci.Eng., 2014, 8(3): 357-371.
[11] ZHANG Xiaojian,MI Zilong,WANG Yang,LIU Shuming,NIU Zhangbin,LU Pinpin,WANG Jun,GU Junnong,CHEN Chao. A red water occurrence in drinking water distribution systems caused by changes in water source in Beijing, China: mechanism analysis and control measures[J]. Front.Environ.Sci.Eng., 2014, 8(3): 417-426.
[12] SUN Daolin,YU Jianwei,YANG Min,AN Wei,ZHAO Yunyun,LU Ning,YUAN Shengguang,ZHANG Dongqing. Occurrence of odor problems in drinking water of major cities across China[J]. Front.Environ.Sci.Eng., 2014, 8(3): 411-416.
[13] Xiaoliu YANG, Jian XU, Jean-Fran?ois DONZIER, Coralie NOEL. A comparison of the water management systems in France and China[J]. Front Envir Sci Eng, 2013, 7(5): 721-734.
[14] Xiong NING, Yi LIU, Jining CHEN, Xin DONG, Wangfeng LI, Bin LIANG. Sustainability of urban drainage management: a perspective on infrastructure resilience and thresholds[J]. Front Envir Sci Eng, 2013, 7(5): 658-668.
[15] Zhuo CHEN, Huu Hao NGO, Wenshan GUO, Xiaochang WANG. Analysis of Sydney’s recycled water schemes[J]. Front Envir Sci Eng, 2013, 7(4): 608-615.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed