Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2014, Vol. 8 Issue (2) : 267-276    https://doi.org/10.1007/s11783-013-0530-3
RESEARCH ARTICLE
Enhanced dewatering characteristics of waste activated sludge with Fenton pretreatment: effectiveness and statistical optimization
Guangyin ZHEN1,3, Xueqin LU2,3, Baoying WANG4, Youcai ZHAO1(), Xiaoli CHAI1, Dongjie NIU1, Tiantao ZHAO1
1. The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; 2. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; 3. Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan; 4. Shanghai Tongji Construction Co., Ltd, Shanghai 200092, China
 Download: PDF(512 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, the enhanced dewaterabing characteristics of waste activated sludge using Fenton pretreatment was investigated in terms of effectiveness and statistical optimization. Response surface method (RSM) and central composite design (CCD) were applied to evaluate and optimize the effectiveness of important operational parameters, i.e., H2O2 concentrations, Fe2+ concentrations and initial pH values. A significant quadratic polynomial model was obtained (R2= 0.9189) with capillary suction time (CST) reduction efficiency as the response. Numerical optimization based on desirability function was carried out. The optimum values for H2O2, Fe2+, and initial pH were found to be 178 mg·g-1 VSS (volatile suspended solids), 211 mg·g-1 VSS and 3.8, respectively, at which CST reduction efficiency of 98.25% could be achieved. This complied well with those predicted by the established polynomial model. The results indicate that Fenton pretreatment is an effective technique for advanced waste activated sludge dewatering. The enhancement of sludge dewaterability by Fenton’s reagent lies in the migration of sludge bound water due to the disintegration of sludge flocs and microbial cells lysis.

Keywords Fenton pretreatment      response surface methodology (RSM)      capillary suction time (CST)      dewaterabilty      molecular weight distribution     
Corresponding Author(s): ZHAO Youcai,Email:zhaoyoucai@tongji.edu.cn   
Issue Date: 01 April 2014
 Cite this article:   
Guangyin ZHEN,Xueqin LU,Baoying WANG, et al. Enhanced dewatering characteristics of waste activated sludge with Fenton pretreatment: effectiveness and statistical optimization[J]. Front Envir Sci Eng, 2014, 8(2): 267-276.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0530-3
https://academic.hep.com.cn/fese/EN/Y2014/V8/I2/267
water content/%pHviscosity /(mPa·s)CST/sTSSa)/(g·L-1)VSSb)/(g·L-1)
96.93±0.066.94±0.20179.80±6.441360±14113.70±0.138.42±0.07
Tab.1  Characteristics of sewage sludge used in this study
variable symbolslevels
naturalcoded-1.682 (-α)-1011.682 (+α)
H2O2/(mg·g-1 VSS)χ1X172.72100140180207.28
Fe2+ /(mg·g-1 VSS)χ2X2110.49133166199221.51
pHχ3X32.323455.68
Tab.2  Range and levels of natural and corresponding coded variables for RSM of sewage sludge dewaterability
run No. coded valuesnatural valuesresponse (E)/%
X1X2X3χ1χ2χ3experimentalpredicted
1-1-1-1100133395.4295.37
21-1-1180133396.6596.47
3-11-1100199396.9896.68
411-1180199397.2997.49
5-1-11100133595.6095.36
61-11180133596.1396.38
7-111100199596.4696.59
8111180199597.3297.31
9-1.6820072.72166495.5695.80
101.68200207.28166497.5197.33
110-1.6820140110.49496.1396.35
1201.6820140221.51497.5497.53
1300-1.6821401662.3296.5196.68
14001.6821401665.6896.3196.25
15000140166497.0896.76
16000140166497.1797.09
17000140166497.2997.09
18000140166496.9297.09
19000140166497.3097.09
20000140166497.1497.09
Tab.3  Experimental and predicted response results of Fenton’s reagent to condition sewage sludge
sourcedegrees of freedom (DF)sum of squares (SS)mean square (MS)F-valueP
regression97.836950.8707712.59<0.0001
linear36.234550.370415.360.019
quadratic 31.551090.517037.480.007
interactive30.051310.017100.250.861
residual 100.691660.06917
lack of fit50.586820.117365.600.041
pure error50.104850.02097
cor. total198.52861
R2 0.9189
Radj20.8559
Tab.4  ANOVA for the polynomial model for CST reduction efficiency (%)
terms coefficientsstandardized residualT-valueP
constant 79.82873.9021320.4580.000
χ10.05500.019262.8540.017
χ20.08130.031572.5740.028
χ32.27750.931312.4450.035
χ12-0.00010.00004-2.6790.023
χ22-0.00020.00008-1.9990.074
χ32-0.26830.08840-3.0350.013
χ1χ2-0.00010.00007-0.8020.441
χ1χ3-0.00050.00232-0.2130.835
χ2χ3-0.00060.00282-0.2300.823
Tab.5  Significance test of regression coefficients
Fig.1  Plots of standardized residuals vs. normal % of probability (a) and predicted vs. actual values (b) for CST reduction efficiency (%)
Fig.2  Response surface (a) and contour lines (b) for the interactive effects of HO and Fe concentrations on CST reduction efficiency (%)
Fig.3  Response surface (a) and contour lines (b) for the interactive effects of HO concentration and initial pH on CST reduction efficiency (%)
Fig.4  Response surface (a) and contour lines (b) for the interactive effects of Fe concentration and initial pH on CST reduction efficiency (%)
Fig.5  Molecular weight distribution of organic maters in sludge filtrates before and after Fenton conditioning (the mobile phase is Milli-Q water. Polyethylene glycol (MW at 1169, 771,128, 12, 4, 0.62 and 0.194 kDa) is used as molecular standard for the calculation)
Fig.6  Micrographs of the raw sludge (a) and sludge conditioned with Fenton’s reagent (b)
Fig.7  Schematic of sludge dewatering process with Fenton’s reagent
1 Feng X, Deng J C, Lei H Y, Bai T, Fan Q J, Li Z X. Dewaterability of waste activated sludge with ultrasound conditioning. Bioresource Technology , 2009, 100(3): 1074–1081
doi: 10.1016/j.biortech.2008.07.055 pmid:18783942
2 Sakohara S, Ochiai E, Kusaka T. Dewatering of activated sludge by thermosensitive polymers. Separation and Purification Technology , 2007, 56(3): 296–302
doi: 10.1016/j.seppur.2007.02.004
3 Lee C H, Liu J C. Sludge dewaterability and floc structure in dual polymer conditioning. Advances in Environmental Research , 2001, 5(2): 129–136
doi: 10.1016/S1093-0191(00)00049-6
4 Watanabe Y, Kubo K, Sato S. Application of amphoteric polyelectrolytes for sludge dewatering. Langmuir , 1999, 15(12): 4157–4164
doi: 10.1021/la981130c
5 Li H, Jin Y Y, Nie Y F. Application of alkaline treatment for sludge decrement and humic acid recovery. Bioresource Technology , 2009, 100(24): 6278–6283
doi: 10.1016/j.biortech.2009.07.022 pmid:19651507
6 Yuan H P, Zhu N W, Song F Y. Dewaterability characteristics of sludge conditioned with surfactants pretreatment by electrolysis. Bioresource Technology , 2011, 102(3): 2308–2315
doi: 10.1016/j.biortech.2010.10.065 pmid:21041078
7 Pei H Y, Hu W R, Liu Q H. Effect of protease and cellulase on the characteristic of activated sludge. Journal of Hazardous Materials , 2010, 178(1–3): 397–403
doi: 10.1016/j.jhazmat.2010.01.094 pmid:20138701
8 Yu Q, Lei H L, Yu G W, Feng X, Li Z X, Wu Z C. Influence of microwave irradiation on sludge dewaterability. Chemical Engineering Journal , 2009, 155(1–2): 88–93
doi: 10.1016/j.cej.2009.07.010
9 Lu M C, Lin C J, Liao C H, Ting W P, Huang R Y. Influence of pH on the dewatering of activated sludge by Fenton’s reagent. Water Science and Technology , 2001, 44(10): 327–332
pmid:11794674
10 Lu M C, Lin C J, Liao C H. Huang R Y, Ting W P. Dewatering of activated sludge by Fenton’s reagent. Advances in Environmetal Research , 2003, 7(3): 667–670
11 Neyens E, Baeyens J, Dewil R, de heyder B. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. Journal of Hazardous Materials , 2004, 106(2–3): 83–92
doi: 10.1016/j.jhazmat.2003.11.014 pmid:15177096
12 Kwon J H, Park K Y, Park J H, Lee S H, Ahn K H. Acidic and hydrogen peroxide treatment of polyaluminum chloride (PACL) sludge from water treatment. Water Science and Technology , 2004, 50(9): 99–105
pmid:15581000
13 Buyukkamaci N. Biological sludge conditioning by Fenton’s reagent. Process Biochemistry , 2004, 39(11): 1503–1506
doi: 10.1016/S0032-9592(03)00294-2
14 Wang X, Niu D J, Yang X S, Zhao Y C. Optimization of methane fermentation from effluent of bio-hydrogen fermentation process using response surface methodology. Bioresource Technology , 2008, 99(10): 4292–4299
doi: 10.1016/j.biortech.2007.08.046 pmid:17920883
15 Mohajeri S, Aziz H A, Isa M H, Zahed M A, Adlan M N. Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique. Journal of Hazardous Materials , 2010, 176(1–3): 749–758
doi: 10.1016/j.jhazmat.2009.11.099 pmid:20022166
16 Benatti C T, Tavares C R, Guedes T A. Optimization of Fenton’s oxidation of chemical laboratory wastewaters using the response surface methodology. Journal of Environmental Management , 2006, 80(1): 66–74
doi: 10.1016/j.jenvman.2005.08.014 pmid:16377070
17 Kshirsagar A C, Singhal R S. Optimization of starch oleate derivatives from native corn and hydrolyzed corn starch by response surface methodology. Carbohydrate Polymers , 2007, 69(3): 455–461
doi: 10.1016/j.carbpol.2007.01.007
18 Yuan H P, Zhu N W, Song L J. Conditioning of sewage sludge with electrolysis: effectiveness and optimizing study to improve dewaterability. Bioresource Technology , 2010, 101(12): 4285–4290
doi: 10.1016/j.biortech.2009.12.147 pmid:20153168
19 Ahmad A L, Ismail S, Bhatia S. Optimization of coagulation-flocculation process for palm oil mill effluent using response surface methodology. Environmental Science & Technology , 2005, 39(8): 2828–2834
doi: 10.1021/es0498080 pmid:15884382
20 Tony M A, Zhao Y Q, Fu J F, Tayeb A M. Conditioning of aluminium-based water treatment sludge with Fenton’s reagent: effectiveness and optimising study to improve dewaterability. Chemosphere , 2008, 72(4): 673–677
doi: 10.1016/j.chemosphere.2008.03.032 pmid:18457862
21 Mustranta A, Viikari L. Dewatering of activated sludge by an oxidative treatment. Water Science and Technology , 1993, 28(1): 213–221
22 APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington, DC, USA: American Public Health Association Inc., 1998
23 Neyens E, Baeyens J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials , 2003, 98(1–3): 33–50
doi: 10.1016/S0304-3894(02)00282-0 pmid:12628776
24 Badawy M I, Ali M E M. Fenton’s peroxidation and coagulation processes for the treatment of combined industrial and domestic wastewater. Journal of Hazardous Materials , 2006, 136(3): 961–966
doi: 10.1016/j.jhazmat.2006.01.042 pmid:16540240
25 Rastogi A, Ai-Abed S R, Dionysiou D D. Sulfate radical-based ferrous peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Applied Catalysis B: Environmental , 2009, 85(3–4): 171–179
doi: 10.1016/j.apcatb.2008.07.010
26 Zhen G Y, Lu X Q, Zhao Y C, Chai X L, Niu D J. Enhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidation. Bioresource Technology , 2012, 116: 259–265
doi: 10.1016/j.biortech.2012.01.170 pmid:22542138
27 Adav S S, Lee D J, Tay J H. Extracellular polymeric substances and structural stability of aerobic granule. Water Research , 2008, 42(6–7): 1644–1650
doi: 10.1016/j.watres.2007.10.013 pmid:17977570
28 Liu X M, Sheng G P, Luo H W, Zhang F, Yuan S J, Xu J, Zeng R J, Wu J G, Yu H Q. Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environmental Science & Technology , 2010, 44(11): 4355–4360
doi: 10.1021/es9016766 pmid:20446688
29 Badireddy A R, Chellam S, Gassman P L, Engelhard M H, Lea A S, Rosso K M. Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions. Water Research , 2010, 44(15): 4505–4516
doi: 10.1016/j.watres.2010.06.024 pmid:20619438
30 Stumm W, Morgan J J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed. New York: Wiley, 1996
31 Li X Y, Yang S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Research , 2007, 41(5): 1022–1030
doi: 10.1016/j.watres.2006.06.037 pmid:16952388
32 Zhen G Y, Yan X F, Zhou H Y, Chen H, Zhao T T, Zhao Y C. Effects of calcined aluminum salts on the advanced dewatering and solidification/stabilization of sewage sludge. Journal of Environmental Sciences-China , 2011, 23(7): 1225–1232
doi: 10.1016/S1001-0742(10)60539-6 pmid:22125919
[1] Jin GUO, Feng SHENG, Jianhua GUO, Xiong YANG, Mintao MA, Yongzhen PENG. Characterization of the dissolved organic matter in sewage effluent of sequence batch reactor: the impact of carbon source[J]. Front Envir Sci Eng, 2012, 6(2): 280-287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed