Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (4) : 552-558
Study on removing selenate from groundwater by autohydrogenotrophic microorganisms
Siqing XIA(), Shuang SHEN, Jun LIANG, Xiaoyin XU
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
 Download: PDF(239 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Performance of autohydrogenotrophic bacteria for bio-reduction of selenate (Se(VI)) under anaerobic conditions was investigated with batch experiments. Results showed Se(VI) was bio-reduced to selenite (Se(IV)) as an intermediate product, and then to elemental selenium (Se0). Reduction kinetics could be described by the pseudo-first-order model. In particular, the influences of pH value and temperature on Se(VI) reduction by autohydrogentrophic organisms were examined. The high degradation rate was achieved at pH 7.0 to 8.0; and the best reduction temperature was between 25°C and 35°C. This study is of help for treating groundwater with selenium contamination by autohydrogenotrophic bacteria as well as its reactor development.

Keywords autohydrogenotrophic      selenate      hydrogen      groundwater     
Corresponding Authors: XIA Siqing,   
Issue Date: 01 August 2013
 Cite this article:   
Siqing XIA,Shuang SHEN,Jun LIANG, et al. Study on removing selenate from groundwater by autohydrogenotrophic microorganisms[J]. Front Envir Sci Eng, 2013, 7(4): 552-558.
medium componentconcentration/(mg·L-1)medium componentconcentration/(mg·L-1)
Tab.1  Medium composition
Fig.1  Schematic diagram of reactor. 1—sterilization syringe; 2—the plastic cover and rubber plug; 3—hydrogen; 4—simulating groundwater
groupsSe(VI) initial concentration/(mg-Se(VI)·(mg-biomass)-1)pHT/°C
test group5-Se(VI)·(300-biomass)-17.035
control groupswithout Se(VI)0-Se(VI)·(300-biomass)-17.035
without organisms5-Se(VI)·(0-biomass)-17.035
Tab.2  Experimental group and control group conditions
Fig.2  Dynamic change of Se(VI) in feasibility tests
Fig.3  Dynamic change of Se(IV) in feasibility tests
Fig.4  EDS obtained from the insoluble precipitate formed in the autohydrogentrophic organisms
elementalweight percentage/%atom percentage/%
C K54.6262.37
O K43.5337.31
Se L1.850.32
Tab.3  Elemental composition of the insoluble precipitate observed in the autohydrogentrophic organisms
Fig.5  Pseudo-first-order kinetic plots for Se(VI) reduction
Fig.6  Effect of different pH on Se(VI) reduction
Fig.7  Effect of different pH on Se(VI) removal at 180 h
Fig.8  Effect of different temperatures on Se(VI) reduction
Fig.9  Effect of different temperatures of total Se
1 Gillespie R B, Baumann P C. Effects of tissue concentrations of selenium on reproduction by bluegills. Transactions of the American Fisheries Society , 1986, 115(2): 208–213
doi: 10.1577/1548-8659(1986)115<208:EOHTCO>2.0.CO;2
2 Rege M A, Yonge D R, Mendoza D P, Petersen J N, Bereded-Samuel Y, Johnstone D L, Apel W A, Barnes J M. Selenium reduction by a denitrifying consortium. Biotechnology and Bioengineering , 1999, 62(4): 479–484
doi: 10.1002/(SICI)1097-0290(19990220)62:4<479::AID-BIT11>3.0.CO;2-G pmid:10099555
3 Ministry of Health of the People’s Republic of China. China GB 5749(2006) Standards for Drinking Water Quality. Beijing: China Standards Press, 2007 (in Chinese)
4 Lakin H W. Selenium in our environment. In: Kothmy E L, ed. Advances in Chemistry, Series 123. Denver: ACS, 1973, 96–111
5 Haygarth P M. Global importance and global cycling of selenium. In: Frankenberger W T, Benson S, eds. Selenium in the Environment . New York: Marcel Dekker Inc., 1994, 1–27
6 Walcarius A, Devoy J, Bessière J. Interactions of selenate with copper(I) oxide particles. Langmuir , 2004, 20(15): 6335–6343
doi: 10.1021/la0496136 pmid:15248720
7 Mondal K, Jegadeesan G, Lalvani S B. Removal of selenate by Fe and NiFe nanosized particles. Industrial & Engineering Chemistry Research , 2004, 43(16): 4922–4934
doi: 10.1021/ie030715l
8 Yoon I H, Kim K W, Bang S, Kim M G. Reduction and adsorption mechanisms of selenate by zero-valent iron and related iron corrosion. Applied Catalysis B: Environmental , 2011, 104(1-2): 185–192
doi: 10.1016/j.apcatb.2011.02.014
9 Baes A U, Okuda T, Nishijima W. Adsorption and ion exchange of some groundwater anion contaminants in an amine modified coconut coir. Water Science and Technology , 1997, 35(7): 89–95
doi: 10.1016/S0273-1223(97)00118-2
10 Nishimura T, Hashimoto H, Nakayama M. Removal of selenium(VI) from aqueous solution with polyamine-type weakly basic ion exchange resin. Separation Science and Technology , 2007, 42(14): 3155–3167
doi: 10.1080/01496390701513107
11 Richards L A, Richards B S, Sch?fer A I. Renewable energy powered membrane technology: salt and inorganic contaminant removal by nanofiltration/reverse osmosis. Journal of Membrane Science , 2011, 369(1-2): 188–195
doi: 10.1016/j.memsci.2010.11.069
12 Lee E W. Current options in treatment of agricultural drainage water. In: Huntley M E, ed. Biotreatment of Agricultural Wastewater . Boca Raton, FL: CRC Press, 1989, 33–45
13 Losi M E, Frankenberger W T Jr. Bioremediation of selenium in soil and water. Journal of Soil Science , 1997, 162(10): 692–702
doi: 10.1097/00010694-199710000-00002
14 Kashiwa M, Nishimoto S, Takahashi K, Ike M, Fujita M. Factors affecting soluble selenium removal by a selenate-reducing bacterium Bacillus.sp.SF-1. Biotechnology and Bioengineering , 2000, 89(6): 528–533
doi: 10.1016/S1389-1723(00)80051-1
15 Kashiwa M, Ike M, Mihara H, Esaki N, Fujita M. Removal of soluble selenium by a selenate-reducing bacterium. Bacillus.sp.SF-1. Biofactors , 2001, 14(1-4): 261–265
doi: 10.1002/biof.5520140132
16 Bebien M, Kirsch J, Mejean V. Involvement of a putative molybdenum enzyme in the reduction of selenate by Escherichia coli. Journal of Microbiology (Seoul, Korea) , 2002, 148(12): 3865–3872
17 Oremland R S, Steinberg N A, Maest A S, Miller L G, Hollibaugh J T. Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments. Environmental Science & Technology , 1990, 24(8): 1157–1164
doi: 10.1021/es00078a001
19 Lee K C, Rittmann B E. Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water. Water Research , 2002, 36(8): 2040–2052
doi: 10.1016/S0043-1354(01)00425-0 pmid:12092579
20 Nerenberg R, Rittmann B E, Najm I. Perchlorate reduction in a hydrogen-based membrane-biofilm reactor. Journal-American Water Works Association , 2002, 94(11): 103–114
21 Hasar H, Xia S, Ahn C H, Rittmann B E. Simultaneous removal of organic matter and nitrogen compounds by an aerobic/anoxic membrane biofilm reactor. Water Research , 2008, 42(15): 4109–4116
doi: 10.1016/j.watres.2008.07.007 pmid:18684483
22 Nerenberg R, Rittmann B E. Hydrogen-based, hollow-?ber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants. Water Science and Technology , 2004, 49 (11-12): 223–230
23 Chung J, Rittmann B E, Wright W F, Bowman R H. Simultaneous bio-reduction of nitrate, perchlorate, selenate, chromate, arsenate and dibromochloropropane using a hydrogen-based membrane bio?lm reactor. Biodegradation , 2007, 18(2): 199–209
doi: 10.1007/s10532-006-9055-9
24 Chung J, Ryu H, Abbaszadegan M, Rittmann B E. Community structure and function in a H2-based membrane biofilm reactor capable of bioreduction of selenate and chromate. Applied Microbiology and Biotechnology , 2006, 72(6): 1330–1339
doi: 10.1007/s00253-006-0439-x pmid:16673108
25 Chung J, Nerenberg R, Rittmann B E. Bioreduction of selenate using a hydrogen-based membrane biofilm reactor. Environmental Science & Technology , 2006, 40(5): 1664–1671
doi: 10.1021/es051251g pmid:16568785
26 Kurt M, Dunn J, Bourne J R. Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidize-bed biofilm reactor. Biotechnology and Bioengineering , 1987, 29(4): 493–501
doi: 10.1002/bit.260290414
27 Kapoor A, Viraraghavan T. Nitrate removal from drinking water-review. Journal of Environmental Engineering , 1997, 123(4): 371–380
doi: 10.1061/(ASCE)0733-9372(1997)123:4(371)
28 Zhang Y, Zhong F, Xia S. Effect of initial pH on autohydrogenotrophic denitrification. Fresenius Environmental Bulletin , 2009, 18(12): 2352–2358
29 Chung J, Nerenberg R, Rittmann B E. Bio-reduction of soluble chromate using a hydrogen-based membrane biofilm reactor. Water Research , 2006, 40(8): 1634–1642
doi: 10.1016/j.watres.2006.01.049 pmid:16564559
[1] Mengqian Lu, Bin-Le Lin, Kazuya Inoue, Zhongfang Lei, Zhenya Zhang, Kiyotaka Tsunemi. PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan[J]. Front. Environ. Sci. Eng., 2018, 12(2): 13-.
[2] Wenchao Jiang, Ping Tang, Shuguang Lu, Xiang Zhang, Zhaofu Qiu, Qian Sui. Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/ Fe(II)/formic acid system in aqueous solution[J]. Front. Environ. Sci. Eng., 2018, 12(2): 6-.
[3] Deyi Hou, Guanghe Li, Paul Nathanail. An emerging market for groundwater remediation in China: Policies, statistics, and future outlook[J]. Front. Environ. Sci. Eng., 2018, 12(1): 16-.
[4] Maocong Hu, Yin Liu, Zhenhua Yao, Liping Ma, Xianqin Wang. Catalytic reduction for water treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 3-.
[5] Jianwei Liu, Kaixiong Yang, Lin Li, Jingying Zhang. A full-scale integrated-bioreactor with two zones treating odours from sludge thickening tank and dewatering house: performance and microbial characteristics[J]. Front. Environ. Sci. Eng., 2017, 11(4): 6-.
[6] Linxia Yan, Senlin Tian, Jian Zhou, Xin Yuan. Catalytic hydrolysis of gaseous HCN over Cu–Ni/γ-Al2O3 catalyst: parameters and conditions[J]. Front. Environ. Sci. Eng., 2016, 10(6): 5-.
[7] Chong Liu, Jianzheng Li, Shuo Wang, Loring Nies. A syntrophic propionate-oxidizing microflora and its bioaugmentation on anaerobic wastewater treatment for enhancing methane production and COD removal[J]. Front. Environ. Sci. Eng., 2016, 10(4): 13-.
[8] Xubin Pan,Zhongkui Luo,Yongbo Liu. Environmental deterioration of farmlands caused by the irrational use of agricultural technologies[J]. Front. Environ. Sci. Eng., 2016, 10(4): 18-.
[9] Haifa RAJHI,Daniel PUYOL,Mirna C. MARTÍNEZ,Emiliano E. DÍAZ,José L. SANZ. Vacuum promotes metabolic shifts and increases biogenic hydrogen production in dark fermentation systems[J]. Front. Environ. Sci. Eng., 2016, 10(3): 513-521.
[10] Jie ZHU,Wei WANG,Xiuning HUA,Zhou XIA,Zhou DENG. Simultaneous CO2 capture and H2 generation using Fe2O3/Al2O3 and Fe2O3/CuO/Al2O3 as oxygen carriers in single packed bed reactor via chemical looping process[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1117-1129.
[11] Zhaoyi SHEN,Zhuo CHEN,Zhen HOU,Tingting LI,Xiaoxia LU. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms[J]. Front. Environ. Sci. Eng., 2015, 9(5): 912-918.
[12] Bingbing XU,Qiujin XU,Cunzhen LIANG,Li LI,Lijia JIANG. Occurrence and health risk assessment of trace heavy metals via groundwater in Shizhuyuan Polymetallic Mine in Chenzhou City, China[J]. Front. Environ. Sci. Eng., 2015, 9(3): 482-493.
[13] Fen LI,Tao LEI,Yanping ZHANG,Jinzhi WEI,Ying YANG. Preparation, characterization of sludge adsorbent and investigations on its removal of hydrogen sulfide under room temperature[J]. Front. Environ. Sci. Eng., 2015, 9(2): 190-196.
[14] Haifeng JIA,Shidong LIANG,Yansong ZHANG. Assessing the impact on groundwater safety of inter-basin water transfer using a coupled modeling approach[J]. Front. Environ. Sci. Eng., 2015, 9(1): 84-95.
[15] Kyle E. MURRAY,Erin I. Manitou-ALVAREZ,Enos C. INNISS,Frank G. HEALY,Adria A. BODOUR. Assessment of oxidative and UV-C treatments for inactivating bacterial biofilms from groundwater wells[J]. Front. Environ. Sci. Eng., 2015, 9(1): 39-49.
Full text