Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (4) : 526-530    https://doi.org/10.1007/s11783-013-0532-1
SHORT COMMUNICATION
DOW CORNING 1-2577 Conformal Coating as an efficient diffusion material for cathode in the microbial fuel cell
Yanping HOU, Haiping LUO, Guangli LIU(), Renduo ZHANG, Yong LUO, Bangyu QIN, Shanshan CHEN
The Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
 Download: PDF(112 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, DOW CORNING 1-2577 Conformal Coating was proposed for the cathode diffusion layer of the microbial fuel cell (MFC). In MFCs, stainless steel mesh cathodes using DOW CORNING 1-2577 Conformal Coating/carbon as the diffusion layer and two poly (dimethylsiloxane) (PDMS)/carbon diffusion layers and carbon cloth cathode with four poly (tetrafluoroethylene) (PTFE) diffusion layers were constructed for comparison. Under the same operational condition, the MFCs with the DOW CORNING 1-2577 Conformal Coating/carbon diffusion layer produced the maximum power density of 1585±52 mW·m-2, compared with those using poly (tetrafluoroethylene) (PTFE) diffusion layers (1421±45 mW·m-2) and poly (dimethylsiloxane) (PDMS)/carbon diffusion layers (1353±49 mW·m-2). The DOW CORNING 1-2577 Conformal Coating could be an alternative for the diffusion layer construction in the MFC due to its remarkable performance and much simple construction procedure.

Keywords microbial fuel cell      diffusion layer      power density      DOW CORNING1-2577 Conformal Coating     
Corresponding Author(s): LIU Guangli,Email:liugl@mail.sysu.edu.cn   
Issue Date: 01 August 2013
 Cite this article:   
Yanping HOU,Haiping LUO,Guangli LIU, et al. DOW CORNING 1-2577 Conformal Coating as an efficient diffusion material for cathode in the microbial fuel cell[J]. Front Envir Sci Eng, 2013, 7(4): 526-530.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0532-1
https://academic.hep.com.cn/fese/EN/Y2013/V7/I4/526
Fig.1  Power generation of MFCs using cathodes with the silicone resin/carbon, PTFE, and PDMS/carbon diffusion layers. (a) Voltage outputs; (b) power densities at cycle 2; (c) power densities at cycle 22
Fig.2  Linear sweep voltammetry of different cathodes with the silicone resin/carbon, PTFE, and PDMS/carbon diffusion layers
1 Oh S E, Min B, Logan B E. Cathode performance as a factor in electricity generation in microbial fuel cells. Environmental Science & Technology , 2004, 38(18): 4900-4904
doi: 10.1021/es049422p pmid:15487802
2 Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology , 2005, 23(6): 291-298
doi: 10.1016/j.tibtech.2005.04.008 pmid:15922081
3 Lovley D R. The microbe electric: conversion of organic matter to electricity. Current Opinion in Biotechnology , 2008, 19(6): 564-571
doi: 10.1016/j.copbio.2008.10.005 pmid:19000760
4 Logan B E. Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews. Microbiology , 2009, 7(5): 375-381
doi: 10.1038/nrmicro2113 pmid:19330018
5 Cheng S A, Liu H, Logan B E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications , 2006, 8(3): 489-494
doi: 10.1016/j.elecom.2006.01.010
6 Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology , 2004, 38(14): 4040-4046
doi: 10.1021/es0499344 pmid:15298217
7 Logan B E, Cheng S A, Watson V, Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science & Technology , 2007, 41(9): 3341-3346
doi: 10.1021/es062644y pmid:17539547
8 Cheng S A, Liu H, Logan B E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells. Environmental Science & Technology , 2006, 40(1): 364-369
doi: 10.1021/es0512071 pmid:16433373
9 Zhang F, Saito T, Cheng S A, Hickner M A, Logan B E. Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors. Environmental Science & Technology , 2010, 44(4): 1490-1495
doi: 10.1021/es903009d pmid:20099808
10 Luo Y, Zhang F, Wei B, Liu G L, Zhang R D, Logan B E. Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells. Journal of Power Sources , 2011, 196(22): 9317-9321
doi: 10.1016/j.jpowsour.2011.07.077
11 Lovley D R, Phillips E J P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology , 1988, 54(6): 1472-1480
pmid:16347658
12 Logan B E, Hamelers B, Rozendal R, Schr?der U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environmental Science & Technology , 2006, 40(17): 5181-5192
doi: 10.1021/es0605016 pmid:16999087
13 Zhang F, Merrill M D, Tokash J C, Saito T, Cheng S A, Hickner M A, Logan B E. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel current collectors. Journal of Power Sources , 2011, 196(3): 1097-1102
doi: 10.1016/j.jpowsour.2010.08.011
14 Chen Y F, Lv Z S, Xu J M, Peng D Q, Liu Y X, Chen J X, Sun X B, Feng C H, Wei C H. Stainless steel mesh coated with MnO2/carbon nanotube and polymethylphenyl siloxane as low-cost and high-performance microbial fuel cell cathode materials. Journal of Power Sources , 2012, 201: 136-141
doi: 10.1016/j.jpowsour.2011.10.134
[1] Xingguo Guo, Qiuying Wang, Ting Xu, Kajia Wei, Mengxi Yin, Peng Liang, Xia Huang, Xiaoyuan Zhang. One-step ball milling-prepared nano Fe2O3 and nitrogen-doped graphene with high oxygen reduction activity and its application in microbial fuel cells[J]. Front. Environ. Sci. Eng., 2020, 14(2): 30-.
[2] Xiaoxue Mei, Heming Wang, Dianxun Hou, Fernanda Leite Lobo, Defeng Xing, Zhiyong Jason Ren. Shipboard bilge water treatment by electrocoagulation powered by microbial fuel cells[J]. Front. Environ. Sci. Eng., 2019, 13(4): 53-.
[3] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[4] Qingliang Zhao, Hang Yu, Weixian Zhang, Felix Tetteh Kabutey, Junqiu Jiang, Yunshu Zhang, Kun Wang, Jing Ding. Microbial fuel cell with high content solid wastes as substrates: a review[J]. Front. Environ. Sci. Eng., 2017, 11(2): 13-.
[5] Yong XIAO,Yue ZHENG,Song WU,Zhao-Hui YANG,Feng ZHAO. Nitrogen recovery from wastewater using microbial fuel cells[J]. Front. Environ. Sci. Eng., 2016, 10(1): 185-191.
[6] Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG. Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1084-1095.
[7] Sanath KONDAVEETI,Kwang Soon CHOI,Ramesh KAKARLA,Booki MIN. Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs)[J]. Front.Environ.Sci.Eng., 2014, 8(5): 784-791.
[8] Yanping HOU, Kaiming LI, Haiping LUO, Guangli LIU, Renduo ZHANG, Bangyu QIN, Shanshan CHEN. Using crosslinked polyvinyl alcohol polymer membrane as a separator in the microbial fuel cell[J]. Front Envir Sci Eng, 2014, 8(1): 137-143.
[9] Peng LIANG, Jincheng WEI, Ming LI, Xia HUANG. Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode[J]. Front Envir Sci Eng, 2013, 7(6): 913-919.
[10] Aijie WANG, Haoyi CHENG, Nanqi REN, Dan CUI, Na LIN, Weimin WU. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery[J]. Front Envir Sci Eng, 2012, 6(4): 569-574.
[11] Husen ZHANG. Using pyrosequencing and quantitative PCR to analyze microbial communities[J]. Front Envir Sci Eng Chin, 2011, 5(1): 21-27.
[12] Xiaoxin CAO , Xia HUANG , Xiaoyuan ZHANG , Peng LIANG , Mingzhi FAN , . A mini-microbial fuel cell for voltage testing of exoelectrogenic bacteria[J]. Front.Environ.Sci.Eng., 2009, 3(3): 307-312.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed