Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2014, Vol. 8 Issue (1) : 137-143    https://doi.org/10.1007/s11783-013-0534-z
RESEARCH ARTICLE
Using crosslinked polyvinyl alcohol polymer membrane as a separator in the microbial fuel cell
Yanping HOU1, Kaiming LI2, Haiping LUO1, Guangli LIU1(), Renduo ZHANG1, Bangyu QIN1, Shanshan CHEN1
1. The Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science & Engineering, Sun Yat-Sen University, Guangzhou 510275, China; 2. South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
 Download: PDF(166 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Separator between anode and cathode is an essential part of the microbial fuel cell (MFC) and its property could significantly influence the system performance. In this study we used polyvinyl alcohol (PVA) polymer membrane crosslinked with sulfosuccinic acid (SSA) as a new separator for the MFC. The highest power density of 759±4 mW·m-2 was obtained when MFC using the PVA membrane crosslinked with 15% of SSA due to its desirable proton conductivity (5.16 × 10-2 S·cm-1). The power density significantly increased to 1106±30?mW·m-2 with a separator-electrode-assembly configuration, which was comparable with glass fiber (1170±46?mW·m-2). The coulombic efficiencies of the MFCs with crosslinked PVA membranes ranged from 36.3% to 45.7% at a fix external resistance of 1000 ?. The crosslinked PVA membrane could be a promising alternative to separator materials for constructing practical MFC system.

Keywords microbial fuel cell      crosslinked polyvinyl alcohol (PVA) membrane      separator material      power generation      coulombic efficiency     
Corresponding Author(s): LIU Guangli,Email:liugl@mail.sysu.edu.cn   
Issue Date: 01 February 2014
 Cite this article:   
Yanping HOU,Kaiming LI,Haiping LUO, et al. Using crosslinked polyvinyl alcohol polymer membrane as a separator in the microbial fuel cell[J]. Front Envir Sci Eng, 2014, 8(1): 137-143.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0534-z
https://academic.hep.com.cn/fese/EN/Y2014/V8/I1/137
Fig.1  (a) Power densities and (b) electrode potentials (cathode, filled symbols; anode, open symbols) (vs. SCE) of the crosslinked PVA membranes with different amount of crosslinker SSA
membranethickness/μmwater uptake/%IEC /(mmol·g-1)oxygen mass transfer coefficient κo/( × 10-4 cm·s-1)acetate mass transfer coefficient κA/( × 10-8 cm·s-1)proton conductivityσ/( × 10-2 S·cm-1)
PVA/SSA-5*180.48±2.69164.35±8.410.72±0.081.33±0.045.91±0.143.73±0.09
PVA/SSA-10176.20±7.46117.26±5.261.01±0.061.40±0.056.01±0.204.51±0.10
PVA/SSA-15161.94±6.3195.64±6.951.21±0.051.47±0.036.13±0.165.16±0.13
PVA/SSA-20170.12±5.2570.82±4.641.34±0.071.39±0.065.75±0.234.02±0.08
Tab.1  Properties of crosslinked PVA membranes
Fig.2  (a) Comparison of power generation of PVA/SSA-15, GF1 and the MFC without a separator (NS) in separator-cathode (SC) and separator-electrode-assembly configuration (SEA); (b) electrode potentials as a function of current density (cathode, filled symbols; anode, open symbols) (vs. SCE)
configurationseparatorinternal resistance/Ωmaximum power density /(mW·m-2)
SCa)PVA/SSA-5*116±4604±25
SCPVA/SSA-10106±5715±20
SCPVA/SSA-15102±5759±4
SCPVA/SSA-20118±6550±19
SCGF 1.0100±5782±33
NSb)93±3905±21
SEAc)PVA/SSA-1584±51106±30
SEAGF181±31170±46
Tab.2  Comparison of the performance of crosslinked PVA membranes with glass fiber and that without separator in separator-cathode and separator-electrode-assembly configuration
Fig.3  Coulombic efficiencies of different separators run at a fix external resistance of 1000Ω
1 Logan B E. Microbial Fuel Cells. New York: Wiley, 2007
2 Lovley D R. The microbe electric: conversion of organic matter to electricity. Current Opinion in Biotechnology , 2008, 19(6): 564–571
doi: 10.1016/j.copbio.2008.10.005 pmid:19000760
3 Mohan Y, Manojmuthukumar S, Das D. Electricity generation using microbial fuel cells. Inernational Journal of Hydrogen Energy , 2008, 33(1): 423–426
doi: 10.1016/j.ijhydene.2007.07.027
4 Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology , 2005, 23(6): 291–298
doi: 10.1016/j.tibtech.2005.04.008 pmid:15922081
5 Liu H, Cheng S A, Logan B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology , 2005, 39(14): 5488–5493
doi: 10.1021/es050316c pmid:16082985
6 Cheng S A, Liu H, Logan B E. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science & Technology , 2006, 40(7): 2426–2432
doi: 10.1021/es051652w pmid:16646485
7 Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnology Advances , 2007, 25(5): 464–482
doi: 10.1016/j.biotechadv.2007.05.004 pmid:17582720
8 Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology , 2004, 38(14): 4040–4046
doi: 10.1021/es0499344 pmid:15298217
9 Kim J R, Premier G C, Hawkes F R, Dinsdale R M, Guwy A J. Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. Journal of Power Sources , 2009, 187(2): 393–399
doi: 10.1016/j.jpowsour.2008.11.020
10 Zhang X Y, Cheng S A, Huang X, Logan B E. Improved performance of single-chamber microbial fuel cells through control of membrane deformation. Biosensors & Bioelectronics , 2010, 25(7): 1825–1828
doi: 10.1016/j.bios.2009.11.018 pmid:20022480
11 Rozendal R A, Hamelers H V M, Molenkamp R J, Buisman C J N. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Research , 2007, 41(9): 1984–1994
doi: 10.1016/j.watres.2007.01.019 pmid:17343894
12 Kim J R, Cheng S A, Oh S E, Logan B E. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environmental Science & Technology , 2007, 41(3): 1004–1009
doi: 10.1021/es062202m pmid:17328216
13 Biffinger J C, Ray R, Little B, Ringeisen B R. Diversifying biological fuel cell designs by use of nanoporous filters. Environmental Science & Technology , 2007, 41(4): 1444–1449
doi: 10.1021/es061634u pmid:17593755
14 Fan Y Z, Hu H Q, Liu H. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. Journal of Power Sources , 2007, 171(2): 348–354
doi: 10.1016/j.jpowsour.2007.06.220
15 Zhang X Y, Cheng S A, Wang X, Huang X, Logan B E. Separator characteristics for increasing performance of microbial fuel cells. Environmental Science & Technology , 2009, 43(21): 8456–8461
doi: 10.1021/es901631p pmid:19924984
16 Finch C A. Poly(vinyl alcohol). New York: Wiley , 1992
17 Chuang W Y, Young T H, Chiu W Y, Lin C Y. The effect of polymeric additives on the structure and permeability of poly (vinyl alcohol) asymmetric membranes. Polymer , 2000, 41(15): 5633–5641
doi: 10.1016/S0032-3861(99)00818-6
18 Bolto B, Tran T, Hoang M, Xie Z, Xie J L. Crosslinked poly(vinyl alcohol) membranes. Progress in Polymer Science , 2009, 34(9): 969–981
doi: 10.1016/j.progpolymsci.2009.05.003
19 Rhim J W, Park H B, Lee C S, Jun J H, Kim D S, Lee Y M. Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. Journal of Membrane Science , 2004, 238(1–2): 143–151
doi: 10.1016/j.memsci.2004.03.030
20 Yang C C, Chiu S J, Chien W C. Development of alkaline direct methanol fuel cells based on crosslinked PVA polymer membranes. Journal of Power Sources , 2006, 162(1): 21–29
doi: 10.1016/j.jpowsour.2006.06.065
21 Yang C C. Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. Journal of Membrane Science , 2007, 288(1–2): 51–60
doi: 10.1016/j.memsci.2006.10.048
22 Yang C C, Lin C T, Chiu S J. Preparation of the PVA/HAP composite polymer membrane for alkaline DMFC application. Desalination , 2008, 233(1–3): 137–146
doi: 10.1016/j.desal.2007.09.036
23 Logan B E, Hamelers B, Rozendal R, Schr?der U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environmental Science & Technology , 2006, 40(17): 5181–5192
doi: 10.1021/es0605016 pmid:16999087
24 Picioreanu C, Head I M, Katuri K P, van Loosdrecht M C, Scott K. A computational model for biofilm-based microbial fuel cells. Water Research , 2007, 41(13): 2921–2940
doi: 10.1016/j.watres.2007.04.009 pmid:17537478
25 Zuo Y, Cheng S A, Logan B E. Ion exchange membrane cathodes for scalable microbial fuel cells. Environmental Science & Technology , 2008, 42(18): 6967–6972
doi: 10.1021/es801055r pmid:18853817
26 Watson V J, Saito T, Hickner M A, Logan B E. Polymer coatings as separator layers for microbial fuel cell cathodes. Journal of Power Sources , 2011, 196(6): 3009–3014
doi: 10.1016/j.jpowsour.2010.11.105
[1] Xingguo Guo, Qiuying Wang, Ting Xu, Kajia Wei, Mengxi Yin, Peng Liang, Xia Huang, Xiaoyuan Zhang. One-step ball milling-prepared nano Fe2O3 and nitrogen-doped graphene with high oxygen reduction activity and its application in microbial fuel cells[J]. Front. Environ. Sci. Eng., 2020, 14(2): 30-.
[2] Xiaoxue Mei, Heming Wang, Dianxun Hou, Fernanda Leite Lobo, Defeng Xing, Zhiyong Jason Ren. Shipboard bilge water treatment by electrocoagulation powered by microbial fuel cells[J]. Front. Environ. Sci. Eng., 2019, 13(4): 53-.
[3] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[4] Qingliang Zhao, Hang Yu, Weixian Zhang, Felix Tetteh Kabutey, Junqiu Jiang, Yunshu Zhang, Kun Wang, Jing Ding. Microbial fuel cell with high content solid wastes as substrates: a review[J]. Front. Environ. Sci. Eng., 2017, 11(2): 13-.
[5] Yong XIAO,Yue ZHENG,Song WU,Zhao-Hui YANG,Feng ZHAO. Nitrogen recovery from wastewater using microbial fuel cells[J]. Front. Environ. Sci. Eng., 2016, 10(1): 185-191.
[6] Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG. Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1084-1095.
[7] Sanath KONDAVEETI,Kwang Soon CHOI,Ramesh KAKARLA,Booki MIN. Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs)[J]. Front.Environ.Sci.Eng., 2014, 8(5): 784-791.
[8] Peng LIANG, Jincheng WEI, Ming LI, Xia HUANG. Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode[J]. Front Envir Sci Eng, 2013, 7(6): 913-919.
[9] Yanping HOU, Haiping LUO, Guangli LIU, Renduo ZHANG, Yong LUO, Bangyu QIN, Shanshan CHEN. DOW CORNING 1-2577 Conformal Coating as an efficient diffusion material for cathode in the microbial fuel cell[J]. Front Envir Sci Eng, 2013, 7(4): 526-530.
[10] Aijie WANG, Haoyi CHENG, Nanqi REN, Dan CUI, Na LIN, Weimin WU. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery[J]. Front Envir Sci Eng, 2012, 6(4): 569-574.
[11] Husen ZHANG. Using pyrosequencing and quantitative PCR to analyze microbial communities[J]. Front Envir Sci Eng Chin, 2011, 5(1): 21-27.
[12] Xiaoshun LI , Futian QU , Dongmei JIANG , Peixin ZHU , . Integrated benefits of power generation by straw biomass —A case study on the Sheyang Straw Power Plants in Jiangsu Province, China[J]. Front.Environ.Sci.Eng., 2009, 3(3): 348-353.
[13] Xiaoxin CAO , Xia HUANG , Xiaoyuan ZHANG , Peng LIANG , Mingzhi FAN , . A mini-microbial fuel cell for voltage testing of exoelectrogenic bacteria[J]. Front.Environ.Sci.Eng., 2009, 3(3): 307-312.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed