Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (4) : 475-482    https://doi.org/10.1007/s11783-013-0538-8
REVIEW ARTICLE
Take back and treatment of discarded electronics: a scientific update
Ab STEVELS1(), Jaco HUISMAN1, Feng WANG1, Jinhui LI2, Boyang LI2, Huabo DUAN2
1. Design for Sustainability Lab, Delft University of Technology, Delft 2600, The Netherlands; 2. Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(106 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper indicates that the performance of tack-back and treatment of electronic waste (e-waste) system can be improved substantially. This can be reached by better taking into account in a better way the big variety in material composition and potential toxicity of electrical and electronic products – from a technical, organizational and regulatory perspective. Realizing that there is no ‘one size fit for all’ and combining smart tailor made solutions with economic of sale will result in the best environmental gain/cost ratio. Several examples show how science and engineering have supported or will support this approach.

Keywords e-waste      take back      treatment      substantially     
Corresponding Author(s): STEVELS Ab,Email:stevels@xs4all.nl; jinhui@tsinghua.edu.cn   
Issue Date: 01 August 2013
 Cite this article:   
Ab STEVELS,Jaco HUISMAN,Feng WANG, et al. Take back and treatment of discarded electronics: a scientific update[J]. Front Envir Sci Eng, 2013, 7(4): 475-482.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0538-8
https://academic.hep.com.cn/fese/EN/Y2013/V7/I4/475
materialenvironmental equivalent for 1 mg gold
plastic20 g
iron 8 g
aluminum2 g
copper 1.3 g
palladium0.3 mg
nickel0.25 g
platinum0.2 mg
silver0.08 g
indium0.05 g
Tab.1  Environmental equivalency of recovering materials (baseline is 1 mg of gold)
materialprice equivalent for 1 mg gold
iron43 g
ABS plastic13 g
aluminum10 g
copper4 g
nickel1.3 g
silver0.06 g
indium0.03 g
palladium2.5 mg
platinum0.6 mg
Tab.2  relative economic value of materials in electronic products (baseline is in 1 mg of gold)
opportunity forinformal recyclingdeep disassembly recyclingHi-tech (shredding) recycling
components reuse limitedyesno
high materials yieldnoyesmoderate/high
efficient upgrading of secondary fractionsnoyesmoderate
low costyesmoderateno
good eco-efficiencynoyesreasonable
low amount of toxic wastenoyesmoderate
health and safetynoyesyes
local communityyesyeslimited
national resourcesmodesthighmoderate/high
Tab.3  Positioning deep disassembly between high tech recycling and informal recycling
1 Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, B?ni H. Global perspectives on e-waste. Environmental Impact Assessment Review , 2005, 25(5): 436-458
doi: 10.1016/j.eiar.2005.04.001
2 Robinson B H. E-waste: an assessment of global production and environmental impacts. Science of the Total Environment , 2009, 408(2): 183-191
doi: 10.1016/j.scitotenv.2009.09.044 pmid:19846207
3 Ogunseitan O A, Schoenung J M, Saphores J D, Shapiro A A. Science and regulation. The electronics revolution: from e-wonderland to e-wasteland. Science , 2009, 326(5953): 670-671
doi: 10.1126/science.1176929 pmid:19900918
4 Sepúlveda A, Schluep M, Renaud F G, Streicher M, Kuehr R, Hagelüken C, Gerecke A C. A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: examples from China and India. Environmental Impact Assessment Review , 2010, 30(1): 28-41
doi: 10.1016/j.eiar.2009.04.001
5 Stone R. China. Confronting a toxic blowback from the electronics trade. Science , 2009, 325(5944): 1055-1056
doi: 10.1126/science.325_1055 pmid:19713496
6 Nnorom I C, Osibanjo O. Electronic waste (e-waste): material flows and management practices in Nigeria. Waste Management , 2008, 28(8): 1472-1479
doi: 10.1016/j.wasman.2007.06.012 pmid:17888645
7 He W, Li G, Ma X, Wang H, Huang J, Xu M, Huang C. WEEE recovery strategies and the WEEE treatment status in China. Journal of Hazard Material , 2006, 136(3): 502-512
doi: 10.1016/j.jhazmat.2006.04.060 pmid:16820262
8 Hicks C, Dietmar R, Eugster M. The recycling and disposal of electrical and electronic waste in China—legislative and market responses. Environmental Impact Assessment Review , 2005, 25(5): 459-471
doi: 10.1016/j.eiar.2005.04.007
9 Nnorom I C, Osibanjo O. Overview of electronic waste (e-waste) management practices and legislations, and their poor applications in the developing countries. Resource Conservation Recycling , 2008, 52(6): 843-858
doi: 10.1016/j.resconrec.2008.01.004
10 Davis G, Heart S. Electronic waste: The local government perspective in Queensland, Australia. Resource Conservation Recycling , 2008, 52(8-9): 1031-1039
doi: 10.1016/j.resconrec.2008.04.001
11 Barba-Gutiérrez Y, Adenso-Díaz B, Hopp M. An analysis of some environmental consequences of European electrical and electronic waste regulation. Resource Conservation Recycling , 2008, 52(3): 481-495
doi: 10.1016/j.resconrec.2007.06.002
12 Khetriwal D S, Kraeuchi P, Widmer R. Producer responsibility for e-waste management: key issues for consideration-learning from the Swiss experience. Journal of Environmental Management , 2009, 90(1): 153-165
doi: 10.1016/j.jenvman.2007.08.019 pmid:18162284
13 Huisman J, Magalini F, Kuehr R, Maurer C.Lessons from the WEEE review research studies. In: Proceedings of Electronics Goes Green Conference . Berlin, 2008
14 Yoshida F, Yoshida H. Japan, the European Union and waste of electrical and electronic equipment: key lessons learned. Environmental Engineering Science , 2010, 27(1): 21-28
doi: 10.1089/ees.2009.0109
15 Hagelüken C, Meskers C.Mining our computers: opportunities and challenges to recover scarce and valuable metals from end-of-life electronic devices. In: Proceedings of Electronics Goes Green Conference . Berlin, 2008
16 Wang F, Huisman J, Marinelli T, Zhang Y, van Ooyen S.Economic conditions for formal and informal recycling of e-waste in China. In: Proceeding of Electronics Goes Green Conference . Berlin, 2008
17 Wang F, Huisman J.Formalization of e-waste collection and recycling in China. In: Proceedings of Trans-Waste Final Conference: Less waste, more resources-Reuse and the informal sector in Europe . Budapest, 2012
18 Zhu S, He W, Li G, Zhuang X, Huang J, Liang H, Han Y. Estimating the impact of the home appliances trade-in policy on WEEE management in China. Waste Management and Research , 2012, 30(11): 1213-1221
doi: 10.1177/0734242X12437568 pmid:22492263
19 Huisman J.QWERTY and eco-efficiency analysis on treatment of CRT containing appliances at metallo-chimique NV, the eco-efficiency of treating CRT glass fractions versus stripped appliances in secondary copper-tin-lead smelter. Report Written for Metallo-Chimique NV , 2004
20 Stevels A, Huisman J.Industry vision on the implementation of WEEE and RoHS. In: Proceedings of EcoDesign 2003 Conference. Tokyo , 2003
21 Nissen N F, Griese H, Middendorf A, Muller J, Potter H, Reichl H.Environmental assessments of electronics: a new model to bridge the gap between full life cycle evaluations and product design. In: Proceedings of International Symposium on Electronics and Environment . San Francisco, 1997
22 Stevels A, Boks C.The lasting advantages of Disassembly Analysis, benchmarking applications in the electronics industry. In: Proceedings of CARE conference on ‘Green Electronics’ . Vienna, 2002
[1] Mengjun Chen, Oladele A. Ogunseitan. Zero E-waste: Regulatory impediments and blockchain imperatives[J]. Front. Environ. Sci. Eng., 2021, 15(6): 114-.
[2] Fanling Meng, Yunxue Xia, Jianshuai Zhang, Dong Qiu, Yaozhu Chu, Yuanyuan Tang. Cu/Cr co-stabilization mechanisms in a simulated Al2O3-Fe2O3-Cr2O3-CuO waste system[J]. Front. Environ. Sci. Eng., 2021, 15(6): 116-.
[3] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[4] Ying Xu, Hui Gong, Xiaohu Dai. High-solid anaerobic digestion of sewage sludge: achievements and perspectives[J]. Front. Environ. Sci. Eng., 2021, 15(4): 71-.
[5] Xiaojie Shi, Zhuo Chen, Yun Lu, Qi Shi, Yinhu Wu, Hong-Ying Hu. Significant increase of assimilable organic carbon (AOC) levels in MBR effluents followed by coagulation, ozonation and combined treatments: Implications for biostability control of reclaimed water[J]. Front. Environ. Sci. Eng., 2021, 15(4): 68-.
[6] Zhiling Wu, Xianchun Tang, Hongbin Chen. Seasonal and treatment-process variations in invertebrates in drinking water treatment plants[J]. Front. Environ. Sci. Eng., 2021, 15(4): 62-.
[7] Ling Wang, Chunxue Yang, Sangeetha Thangavel, Zechong Guo, Chuan Chen, Aijie Wang, Wenzong Liu. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge[J]. Front. Environ. Sci. Eng., 2021, 15(4): 56-.
[8] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[9] Ting Chen, Yingying Zhao, Xiaopeng Qiu, Xiaoyan Zhu, Xiaojie Liu, Jun Yin, Dongsheng Shen, Huajun Feng. Economics analysis of food waste treatment in China and its influencing factors[J]. Front. Environ. Sci. Eng., 2021, 15(2): 33-.
[10] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[11] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[12] Lu Song, Can Wang, Yizhu Wang. Optimized determination of airborne tetracycline resistance genes in laboratory atmosphere[J]. Front. Environ. Sci. Eng., 2020, 14(6): 95-.
[13] Haizhou Liu, Xuejun Yu. Hexavalent chromium in drinking water: Chemistry, challenges and future outlook on Sn(II)- and photocatalyst-based treatment[J]. Front. Environ. Sci. Eng., 2020, 14(5): 88-.
[14] Yang Yang. Recent advances in the electrochemical oxidation water treatment: Spotlight on byproduct control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 85-.
[15] Haiyan Yang, Shangping Xu, Derek E. Chitwood, Yin Wang. Ceramic water filter for point-of-use water treatment in developing countries: Principles, challenges and opportunities[J]. Front. Environ. Sci. Eng., 2020, 14(5): 79-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed