Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (6) : 896-905    https://doi.org/10.1007/s11783-013-0539-7
RESEARCH ARTICLE
Effects of shear force on formation and properties of anoxic granular sludge in SBR
Xinyan ZHANG1(), Binbin WANG1, Qingqing HAN2, Hongmei ZHAO3, Dangcong PENG1
1. School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; 2. Sinosteel Wuhan Safety & Environmental Protection Research Institute, Wuhan 430081, China; 3. School of Environmental Science and Engineering, Chang’an University, Xi’an 710056, China
 Download: PDF(549 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reports the effects of shear force on anoxic granular sludge in sequencing batch reactors (SBR). The study was carried out in two SBRs (SBR1 and SBR2) in which sodium acetate (200 mg COD·L-1) was used as the sole substrate and sodium nitrate (40 mgNO3-N·L-1) was employed as the electron acceptor. The preliminary objective of this study was to cultivate anoxic granules in the SBR in order to investigate the effects of shear force on the formation of anoxic granular sludge and to compare the properties of anoxic sludge in the SBR. This study reports new results for the values of average velocity gradient, a measure of the applied shear force, which was varied in the two SBRs (3.79 s-1 and 9.76 s-1 for SBR1 and SBR2 respectively). The important findings of this research highlight the dual effects of shear force on anoxic granules. A low shear force can produce large anoxic granules with high activity and poor settling ability, whereas higher shear forces produce smaller granules with better settling ability and lower activity. The results of this study show that the anoxic granulation is closely related to the strength of the shear force. For high shear force, this research demonstrated that: 1) granules with smaller diameters, high density and good settling ability were formed in the reactor, and 2) granular sludge formed faster than it did in the low shear force reactor (41days versus 76 days). Once a steady-state has been achieved, the nitrate and COD removal rates were found to be 98% and 80%, respectively. For low shear force, such as was applied in SBR1, this research demonstrated that: 1) the activity of anoxic granular sludge in low shear force was higher than that in high shear force, 2) higher amount of soluble microbial products (SMPs) were produced, and 3) large pores were observed inside the larger granules, which are beneficial for nitrogen gas diffusion. Electron microscopic examination of the anoxic granules in both reactors showed that the morphology of the granules was ellipsoidal with a clear outline. Coccus and rod-shaped bacteria were wrapped by filamentous bacteria on the surface of granule.

Keywords denitrification      anoxic granular sludge      sequencing batch reactors (SBR)      shear force     
Corresponding Author(s): ZHANG Xinyan,Email:zhangxinyan126@163.com; dcpeng@xauat.edu.cn   
Issue Date: 01 December 2013
 Cite this article:   
Qingqing HAN,Hongmei ZHAO,Dangcong PENG, et al. Effects of shear force on formation and properties of anoxic granular sludge in SBR[J]. Front Envir Sci Eng, 2013, 7(6): 896-905.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0539-7
https://academic.hep.com.cn/fese/EN/Y2013/V7/I6/896
Fig.1  Photographs of the sludge in the SBR on different days after inoculation; (a) day41 (SBR2); (b) day76 (SBR2); (c) day101 (SBR2); (d) mature sludge (SBR2); (e) day 76 (SBR1); (f)day 83 (SBR1); (g) day 121 (SBR1); (h) mature sludge (SBR1)
Fig.2  Evolution of parameters during the formation process of anoxic granules: (a) SS; (b) VSS/SS; (c) average diameter (d) SVI
Fig.3  Diameter distribution of granules in stable stage from two reactors (a) SBR1, (b) SBR2
parametersspecific gravity /(g·cm-3)SS/(mg·L-1)VSS/(mg·L-1)settling velocity/(m·h-1)SVI/(mL·g-1 SS)
SBR11.0033310162238.8960-80
SBR21.0216960396243.3054-68
Tab.1  Physical parameters of granules in stable stage from two reactors with different shear forces
Fig.4  (a) Specific maximum denitrification rates of granules; (b) Specific maximum denitrification rates of granules and flocullent sludge
Fig.5  Change of DOC and SMP concentration in steady-state cycle: (a) SBR1; (b) SBR2
Fig.6  SEM of granular sludge: (a) surface of granule; (b) surface of granule in SBR1; (c) surface of granule in SBR2; (d) inner structure of granule in SBR1; (e) inner structure of granule in SBR2
1 Chen J, Lun S Y. Study on mechanism of anaerobic sludge granulation in UASB reactors. Water Science & Technology , 1993, 28(7):171-178
2 Wiegant W M. The ‘spaghetti theory’ on anaerobic sludge formation, or the inevitability of granulation. In: Lettinga G, Zehnder A J B, Grotenhuis J T C, Hulshoff Pol L W, eds. Granular Anaerobic Sludge: Microbiology and technology. The Netherlands: Pudoc. Wageningen, 1987, 146-152
3 Guiot S R, Pauss A, Costerton J W. A structured model of the anaerobic granules consortium. Water science and technology , 1992, 25(7): 1-10
4 Hulshoff Pol L W, de Castro Lopes S I, Lettinga G, Lens P N L. Anaerobic sludge granulation. Water Research , 2004, 38(6): 1376-1389
doi: 10.1016/j.watres.2003.12.002 pmid:15016515
5 Shizas I, Bagley D M. Improving anaerobic sequencing batch reactor performance by modifying operational parameters. Water Research , 2002, 36(1): 363-367
doi: 10.1016/S0043-1354(01)00237-8 pmid:11766815
6 Choi K H, Chisti Y, Moo-Young M M. Comparative evaluation of hydrodynamic and gas-liquid mass transfer characteristics in bubble column and airlift slurry reactors. The Chemical Engineering Journal , 1996, 62(3): 223-229
doi: 10.1016/0923-0467(96)03085-0
7 Sánchez Pérez J A, Rodríguez Porcel E M, Casas LópezJ L, Fernández Sevilla J M, Chisti Y. Shear rate in stirred tank and bubble column bioreactors. Chemical Engineering Journal , 2006, 124(1-3): 1-5
doi: 10.1016/j.cej.2006.07.002
8 Liu Y, Tay J H. State of the art of biogranulation technology for wastewater treatment. Biotechnology Advances , 2004, 22(7): 533-563
doi: 10.1016/j.biotechadv.2004.05.001 pmid:15262316
9 Dangcong P, Bernet N, Delgenes J P, Moletta R. Aerobic granular sludge - a case report. Water Research , 1999, 33(3): 890-893
doi: 10.1016/S0043-1354(98)00443-6
10 Tay J H, Liu Q S, Liu Y. Microscopy observation of aerobic granulation in sequential aerobic sludge blanket reactor. Journal of Applied Microbiology , 2001, 91(1): 168-175
doi: 10.1046/j.1365-2672.2001.01374.x
11 Quevedo M, Guynot E, Muxi E. Denitrifying potential of methanogenic sludge. Biotechnology Letters , 1996, 18(12): 1363-1368
doi: 10.1007/BF00129336
12 Bhatti Z I, Sumida K, Rouse J D, Furukawa K. Characterization of denitrifying granular sludge treating soft groundwater in an upflow sludge-blanket reactor. Journal of bioscience and bioengineering , 2001, 91(4): 373-377
pmid:16233007
13 Wang Q, Du G C, Chen J. Aerobic granular sludge cultivated under the selective pressure as a driving force. Process Biochemistry , 2004, 39(5): 557-563
doi: 10.1016/S0032-9592(03)00128-6
14 Tay J H, Liu Q S, Liu Y. The effects of shear force on the formation, structure and metabolism of aerobic granules. Applied Microbiology and Biotechnology , 2001, 57(1-2): 227-233
doi: 10.1007/s002530100766 pmid:11693926
15 Adav S S, Lee D J, Lai J Y. Effects of aeration intensity on formation of phenol-fed aerobic granules and extracellular polymeric substances. Applied Microbiology and Biotechnology , 2007, 77(1): 175-182
doi: 10.1007/s00253-007-1125-3
16 Hulshoff Pol L W, de Zeeuw W J, Velzebber C T M, Lettinga G. Granulation in UASB-reactors. Water science and technology , 1983, 8(9): 291-304
17 Wu J, Zhou H M, Li H Z, Zhang P C, Jiang J. Impacts of hydrodynamic shear force on nucleation of flocculent sludge in anaerobic reactor. Water Research , 2009, 43(12): 3029-3036
doi: 10.1016/j.watres.2009.04.026 pmid:19457532
18 Di Iaconi C, Ramadori R, Lopez A, Passino R. Influence of hydrodynamic shear force on properties of granular biomass in a sequencing batch biofiler reactor. Biochemical Engineering Journal , 2006, 30(2): 152-157
doi: 10.1016/j.bej.2006.03.002
19 Liu Y, Tay J H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Research , 2002, 36(7): 1653-1665
doi: 10.1016/S0043-1354(01)00379-7 pmid:12044065
20 Yu H Q, Fang H H P, Tay J H. Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactors by aluminum chloride. Chemosphere , 2001, 44(1): 31-36
doi: 10.1016/S0045-6535(00)00381-7 pmid:11419756
21 Camp T R. Flocculation and flocculation basins. Transactions, American Society of Civil Eingineer , 1955, 120: 1-16
22 Rushton J H, Richards P A. Unit Operations and Processes in Environmental Engineering. 2nd ed. Boston: PWA, 1996
23 Rushton J H.Mixing of liquids in chemical process. Industrical and Engineering Chemistry Research , 1952, 44(2): 2931-2936
24 Rushton J H,Oldshue J Y. Mixing-pesengt theory and practice. Chemical Engineering Progress 1953, 49(4): 161-168
25 McCabe W L, Smith J C. Harriott, Unit Operations of Chemical Engineering. 5th ed. New York: McGraw-Hill, 1993
26 Liu Y, Yang S F, Tay J H. Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios. Applied Microbiology and Biotechnology , 2003, 61(5-6): 556-561
pmid:12764573
27 Qin L, Liu Y, Tay J H. Denitrification on poly-beta-hydroxybutyrate in microbial granular sludge sequencing batch reactor. Water Research , 2005, 39(8): 1503-1510
doi: 10.1016/j.watres.2005.01.025 pmid:15878021
28 Tay J H, Yan Y G. Influence of substrate concentration on microbial selection and granulation during start-up of upflow anaerobic sludge blanket reactors. Water Environment Research , 1996, 68(7): 1140-1150
doi: 10.2175/106143096X128540
29 Pereboom J H F, Vereijken T L F M. Methanogenic granule development in full scale internal circulation reactors. Water science and technology , 1994, 30(8): 9-21
30 Etterer T, Wilderer P A. Generation and properties of aerobic granular sludge. Water science and technology , 2001, 43(3): 19-26
pmid:11381904
31 Beccari M, Passino R, Ramodori R, Tandoi V. Kinetics of dissimilatory nitrate and nitrite reduction in suspended growth culture. Water Pollution Control Federation , 1983, 55(1): 58-64
32 Ni B J, Zeng R J, Fang F, Xie W M, Sheng G P, Yu H Q. Fractionating soluble microbial products in the activated sludge process. Water Research , 2010, 44(7): 2292-2302
doi: 10.1016/j.watres.2009.12.025 pmid:20060562
33 Jarusutthirak C, Amy G. Understanding soluble microbial products (SMP) as a component of effluent organic matter (EfOM). Water Research , 2007, 41(12): 2787-2793
doi: 10.1016/j.watres.2007.03.005 pmid:17442369
34 Barker D J, Salvi S M L, Langenhoff A A M, Stuckey D C. Soluble microbial products in ABR treating low-strength wastewater. Journal of Environmental Engineering , 2000, 126(3): 239-249
doi: 10.1061/(ASCE)0733-9372(2000)126:3(239)
35 Liu R, Huang X, Fan B, Fijimoto M, Qian Y. Progress of studies on soluble microbial products in a membrane bioreactor. Techniques and Equipment for Environmental Pollution Control (in Chinese), 2002, 3(1): 1-7
36 Kratochvil K, Wase D A J, Forster C F. The formation and characterization of a granular sludge in an anoxic USB reactor. Process Safety and Environmental Protection , 1996, 74(5): 94-98
37 Hulshoff Pol L W, Heijnekamp K, Lettinga G. The selection pressure as a driving force behind the granulation of anaerobic sludge. In: Lettinga G, Zehnder A J B, Grotenhuis J T C, Hulshoff Pol L W, eds. Granular Anaerobic Sludge: Microbiology and Technology . The Netherlands: Pudoc.Wageningen, 1987, 153-61
38 Pereboom J H F. Size distribution model for methanogenic granules from full scale UASB and IC reactors. Water science and technology , 1994, 30(12): 211-221
39 Liu Y, Tay J H. Metabolic response of biofilm to shear stress in fixed-film culture. Journal of Applied Microbiology , 2001, 90(3): 337-342
doi: 10.1046/j.1365-2672.2001.01244.x pmid:11298227
40 Yang S F, Tay J H, Liu Y. A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater. Journal of Biotechnology , 2003, 106(1): 77-86
doi: 10.1016/j.jbiotec.2003.07.007 pmid:14636712
41 Fernández-Nava Y, Mara?ón E, Soons J, Castrillón L. Denitrification of high nitrate concentration wastewater using alternative carbon sources. Journal of Hazardous Materials , 2010, 173(1-3): 682-688
doi: 10.1016/j.jhazmat.2009.08.140 pmid:19782470
42 de Bok F A M, Plugge C M, Stams A J M. Interspecies electron transfer in methanogenic propionate degrading consortia. Water Research , 2004, 38(6): 1368-1375
doi: 10.1016/j.watres.2003.11.028 pmid:15016514
43 Chisti Y. Mass transfer. In: Flickinger M C, Drew S W, eds. Encyclopedia of BioprocessTechnology: Fermentation, Biocatalysis, and Bioseparation , vol. 3. New York: Wiley, 1999, 1607-1640
[1] Yi Qian, Weichuan Qiao, Yunhao Zhang. Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression[J]. Front. Environ. Sci. Eng., 2021, 15(5): 100-.
[2] Boyi Cheng, Yi Wang, Yumei Hua, Kate V. Heal. The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species[J]. Front. Environ. Sci. Eng., 2021, 15(4): 73-.
[3] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[4] Yuxin Li, Jiayin Ling, Pengcheng Chen, Jinliang Chen, Ruizhi Dai, Jinsong Liao, Jiejing Yu, Yanbin Xu. Pseudomonas mendocina LYX: A novel aerobic bacterium with advantage of removing nitrate high effectively by assimilation and dissimilation simultaneously[J]. Front. Environ. Sci. Eng., 2021, 15(4): 57-.
[5] Binbin Sheng, Depeng Wang, Xianrong Liu, Guangxing Yang, Wu Zeng, Yiqing Yang, Fangang Meng. Taxonomic and functional variations in the microbial community during the upgrade process of a full-scale landfill leachate treatment plant – from conventional to partial nitrification-denitrification[J]. Front. Environ. Sci. Eng., 2020, 14(6): 93-.
[6] Wenrui Guo, Yue Wen, Yi Chen, Qi Zhou. Sulfur cycle as an electron mediator between carbon and nitrate in a constructed wetland microcosm[J]. Front. Environ. Sci. Eng., 2020, 14(4): 57-.
[7] Zhihao Si, Xinshan Song, Xin Cao, Yuhui Wang, Yifei Wang, Yufeng Zhao, Xiaoyan Ge, Awet Arefe Tesfahunegn. Nitrate removal to its fate in wetland mesocosm filled with sponge iron: Impact of influent COD/N ratio[J]. Front. Environ. Sci. Eng., 2020, 14(1): 4-.
[8] Zhenfeng Han, Ying Miao, Jing Dong, Zhiqiang Shen, Yuexi Zhou, Shan Liu, Chunping Yang. Enhanced nitrogen removal and microbial analysis in partially saturated constructed wetland for treating anaerobically digested swine wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(4): 52-.
[9] Yujiao Sun, Juanjuan Zhao, Lili Chen, Yueqiao Liu, Jiane Zuo. Methanogenic community structure in simultaneous methanogenesis and denitrification granular sludge[J]. Front. Environ. Sci. Eng., 2018, 12(4): 10-.
[10] Lifeng Cao, Weihua Sun, Yuting Zhang, Shimin Feng, Jinyun Dong, Yongming Zhang, Bruce E. Rittmann. Competition for electrons between reductive dechlorination and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 14-.
[11] Xiaolin Sheng, Rui Liu, Xiaoyan Song, Lujun Chen, Kawagishi Tomoki. Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) and a traditional SBR treating digested piggery wastewater[J]. Front. Environ. Sci. Eng., 2017, 11(3): 8-.
[12] Takashi Osada, Makoto Shiraishi, Teruaki Hasegawa, Hirofumi Kawahara. Methane, Nitrous Oxide and Ammonia generation in full-scale swine wastewater purification facilities[J]. Front. Environ. Sci. Eng., 2017, 11(3): 10-.
[13] Ning YAN,Lu WANG,Ling CHANG,Cuiyi ZHANG,Yang ZHOU,Yongming ZHANG,Bruce E. RITTMANN. Coupled aerobic and anoxic biodegradation for quinoline and nitrogen removals[J]. Front. Environ. Sci. Eng., 2015, 9(4): 738-744.
[14] Xi CHEN,Linjiang YUAN,Wenjuan LU,Yuyou LI,Pei LIU,Kun NIE. Cultivation of aerobic granular sludge in a conventional, continuous flow, completely mixed activated sludge system[J]. Front. Environ. Sci. Eng., 2015, 9(2): 324-333.
[15] Yi ZHAO,Tianxiang GUO,Zili ZANG. Activity and characteristics of “Oxygen-enriched” highly reactive absorbent for simultaneous flue gas desulfurization and denitrification[J]. Front. Environ. Sci. Eng., 2015, 9(2): 222-229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed