Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2014, Vol. 8 Issue (2) : 188-194    https://doi.org/10.1007/s11783-013-0544-x
RESEARCH ARTICLE
Oxidative treatment of aqueous monochlorobenzene with thermally-activated persulfate
Qishi LUO()
State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Science, Shanghai 200233, China
 Download: PDF(283 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The oxidation of aqueous monochlorobenzene (MCB) solutions using thermally- activated persulfate has been investigated. The influence of reaction temperature on the kinetics of MCB oxidation was examined, and the Arrenhius Equation rate constants at 20°C, 30°C, 40°C, 50°C, and 60°C for MCB oxidation performance were calculated as 0, 0.001, 0.002, 0.015, 0.057 min-1, which indicates that elevated temperature accelerated the rate. The most efficient molar ratio of persulfate/MCB for MCB oxidation was determined to be 200 to 1 and an increase in the rate constants suggests that the oxidation process proceeded more rapidly with increasing persulfate/MCB molar ratios. In addition, the reactivity of persulfate in contaminated water is partly influenced by the presence of background ions such as Cl-, HCO3-, SO42-, and NO3-. Importantly, a scavenging effect in rate constant was observed for both Cl- and CO32- but not for other ions. The effective thermally activated persulfate oxidation of MCB in groundwater from a real contaminated site was achieved using both elevated reaction temperature and increased persulfate/MCB molar ratio.

Keywords persulfate      monochlorobenzene      advanced oxidation process     
Corresponding Author(s): LUO Qishi,Email:luoqs@saes.sh.cn   
Issue Date: 01 April 2014
 Cite this article:   
Qishi LUO. Oxidative treatment of aqueous monochlorobenzene with thermally-activated persulfate[J]. Front Envir Sci Eng, 2014, 8(2): 188-194.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0544-x
https://academic.hep.com.cn/fese/EN/Y2014/V8/I2/188
parametersvalue
pH7.2
TOC/ (mg·L-1)84.2
SO42- /(mg·L-1)8.6
Cl- /(mg·L-1)15.2
NO3- /(mg·L-1)0.5
HCO3- /(mg·L-1)78.4
CO32- /(mg·L-1)<0.7
MCB /(mg·L-1)75.6
Tab.1  Characterisitics of groundwater at the contaminated site
Fig.1  Oxidation of MCB at various temperatures (initial MCB concentration= 100 mg·L, PS/MCB molar ratio= 100/1)
Fig.2  This shows the effect of initial MCB concentration on oxidation performance with temperature at 50°C and PS/MCB molar ratio= 100/1)
Fig.3  This shows the effect of various PS/MCB molar ratios on oxidation performance at 50°C with initial MCB concentration= 100 mg·L
Fig.4  Effect of cations and anions on MCB oxidation performance (temperature= 50°C, initial MCB concentration= 100 mg·L, PS/MCB molar ratio= 60/1): (a) Cl, (b) CO
Fig.5  In situ MCB-contaminated groundwater treatment using thermally excited persulfate: (a) with various temperature ; (b) with various PS/MCB molar ratios
Fig.6  Proposed MCB decomposition pathway
Fig.7  Change of TOC over time
1 Xu Z, Deng S, Yang Y, Zhang T, Cao Q, Huang J, Yu G. Catalytic destruction of pentachlorobenzene in simulated flue gas by a V2O5-WO3/TiO2 catalyst. Chemosphere , 2012, 87(9): 1032-1038
doi: 10.1016/j.chemosphere.2012.01.004 pmid:22280981
2 Song Y, Wang F, Bian Y, Zhang Y, Jiang X. Chlorobenzenes and organochlorinated pesticides in vegetable soils from an industrial site, China. Journal of Environmental Sciences-China , 2012, 24(3): 362-368
doi: 10.1016/S1001-0742(11)60720-1 pmid:22655347
3 Lee C L, Lee H Y, Tseng K H, Hong P K, Jou C J G.Enhanced dechlorination of chlorobenzene by microwave-induced zero-valent iron: particle effects and activation energy. Environmental Chemistry Letters , 2011, 9(3): 355-359
doi: 10.1007/s10311-010-0286-y
4 Lee C L, Jou C J G, Huang H G. Degradation of chlorobenzene in water using nanoscale Cu coupled with microwave irradiation. Journal of Environmental Engineering , 2010, 136(4): 412-416
doi: 10.1061/(ASCE)EE.1943-7870.0000163
5 Wang K H, Hsieh Y H, Chou M Y, Chang C Y. Photocalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution. Applied Catalysis B: Environmental , 1999, 21(1): 1-8
doi: 10.1016/S0926-3373(98)00116-7
6 Pagano M, Volpe A, Lopez A, Mascolo G, Ciannarella R. Degradation of chlorobenzene by Fenton-like processes using zero-valent iron in the presence of Fe3+ and Cu2+. Environmental Technology , 2011, 32(1-2): 155-165
doi: 10.1080/09593330.2010.490855 pmid:21473278
7 Hollige C, Schraa G, Stams A J M, Zehnder A J B. Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1,2,3-trichlorobenzene to 1,3-dichlorobenzene. Applied and Environmental Microbiology , 1992, 58(5): 1636-1644
pmid:1622233
8 Chen X, Christopher A, Jones J P, Bell S G, Guo Q, Xu F, Rao Z, Wong L L. Crystal structure of the F87W/Y96F/V247L mutant of cytochrome P-450cam with 1,3,5-trichlorobenzene bound and further protein engineering for the oxidation of pentachlorobenzene and hexachlorobenzene. The Journal of Biological Chemistry , 2002, 277(40): 37519-37526
doi: 10.1074/jbc.M203762200 pmid:12114516
9 Tsitonaki A, Petri B, Crimi M, Mosb?k H, Siegrist R, Bjerg P. In situ oxidation of contaminated soil and ground water using persulfate. Critical Reviews in Environmental Science and Technology , 2010, 40(1): 55-91
doi: 10.1080/10643380802039303
10 Watts R J, Teel A L. Chemistry of modified Fenton’s reagent (catalysed H2O2 propagations-CHP) for in situ soil and ground water remediation. Journal of Environmental Engineering , 2005, 131(4): 612-622
doi: 10.1061/(ASCE)0733-9372(2005)131:4(612)
11 Huang K C, Couttenye R A, Hoag G E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere , 2002, 49(4): 413-420
doi: 10.1016/S0045-6535(02)00330-2 pmid:12365838
12 Huang K C, Zhao Z, Hoag G E, Dahmani A, Block P A. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere , 2005, 61(4): 551-560
doi: 10.1016/j.chemosphere.2005.02.032 pmid:16202809
13 Liang C J, Bruell C J, Marley M C, Sperry K L. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination , 2003, 12(2): 207-228
doi: 10.1080/713610970
14 Liang C, Wang Z S, Bruell C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere , 2007, 66(1): 106-113
doi: 10.1016/j.chemosphere.2006.05.026 pmid:16814844
15 Waldemer R H, Tratnyek P G, Johnson R L, Nurmi J T. Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products. Environmental Science & Technology , 2007, 41(3): 1010-1015
doi: 10.1021/es062237m pmid:17328217
16 Anipsitakis G P, Dionysiou D D. Radical generation by the interaction of transition metals with common oxidants. Environmental Science & Technology , 2004, 38(13): 3705-3712
doi: 10.1021/es035121o pmid:15296324
17 Anipsitakis G P, Dionysiou D D. Transition metal/UV-based advanced oxidation technologies for water decontamination. Applied Catalysis , 2004, 54(3): 155-163
doi: 10.1016/j.apcatb.2004.05.025
18 Liang C, Bruell C J, Marley M C, Sperry K L. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere , 2004, 55(9): 1213-1223
doi: 10.1016/j.chemosphere.2004.01.029 pmid:15081762
19 Liang C, Bruell C J, Marley M C, Sperry K L. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere , 2004, 55(9): 1225-1233
doi: 10.1016/j.chemosphere.2004.01.030 pmid:15081763
20 Rastogi A, Al-Abed S R, Dionysiou D D. Sulfate radical-based ferrous peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Applied Catalysis B: Environmental , 2009, 85(3-4): 171-179
doi: 10.1016/j.apcatb.2008.07.010
21 Rastogi A, Al-Abed S R, Dionysiou D D. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols. Water Research , 2009, 43(3): 684-694
doi: 10.1016/j.watres.2008.10.045 pmid:19038413
22 Kolthoff I M, Medalia A I, Raaen H P. The reaction between ferrous iron and peroxides. IV. Reaction with potassium persulfate. Journal of American Chemical Society , 1951, 73(4): 1733-1739
doi: 10.1021/ja01148a089
23 House D A. Kinetics and mechanism of oxidation by peroxydisulfate. Chemical Reviews , 1962, 62(3): 185-203
doi: 10.1021/cr60217a001
24 Gu X, Lu S, Li L, Qiu Z, Sui Q, Lin K, Luo Q. Oxidation of 1,1,1-trichloroethane stimulated by thermally activated persulfate. Industrial & Engineering Chemistry , 2011, 50(19): 11029-11036
doi: 10.1021/ie201059x
25 Liang C J, Huang C F, Chen Y J. Potential for activated persulfate degradation of BTEX contamination. Water Research , 2008, 42(15): 4091-4100
doi: 10.1016/j.watres.2008.06.022 pmid:18718627
26 Huie R E, Clifton C L, Neta P. Electron transfer reaction and equilibria of the carbonate and sulphate radical anions. IRadiation Physics and Chemistry , 1991, 38(5): 477-481
[1] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[2] Zhifei Ma, Huali Cao, Fengchun Lv, Yu Yang, Chen Chen, Tianxue Yang, Haixin Zheng, Daishe Wu. Preparation of nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive black 5[J]. Front. Environ. Sci. Eng., 2021, 15(5): 98-.
[3] Yang Li, Yixin Zhang, Guangshen Xia, Juhong Zhan, Gang Yu, Yujue Wang. Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment[J]. Front. Environ. Sci. Eng., 2021, 15(1): 1-.
[4] Yapeng Song, Hui Gong, Jianbing Wang, Fengmin Chang, Kaijun Wang. Enhanced triallyl isocyanurate (TAIC) degradation through application of an O3/UV process: Performance optimization and degradation pathways[J]. Front. Environ. Sci. Eng., 2020, 14(4): 64-.
[5] Virender K. Sharma, Xin Yu, Thomas J. McDonald, Chetan Jinadatha, Dionysios D. Dionysiou, Mingbao Feng. Elimination of antibiotic resistance genes and control of horizontal transfer risk by UV-based treatment of drinking water: A mini review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 37-.
[6] Siyi Lu, Naiyu Wang, Can Wang. Oxidation and biotoxicity assessment of microcystin-LR using different AOPs based on UV, O3 and H2O2[J]. Front. Environ. Sci. Eng., 2018, 12(3): 12-.
[7] Pan Gao, Yuan Song, Shaoning Wang, Claude Descorme, Shaoxia Yang. Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst in the catalytic wet air oxidation (CWAO) of cationic red GTL under mild reaction conditions[J]. Front. Environ. Sci. Eng., 2018, 12(1): 8-.
[8] Xiaoxia Ou, Jianfang Yan, Fengjie Zhang, Chunhua Zhang. Accelerated degradation of orange G over a wide pH range in the presence of FeVO4[J]. Front. Environ. Sci. Eng., 2018, 12(1): 7-.
[9] Minhui XU,Xiaogang GU,Shuguang LU,Zhouwei MIAO,Xueke ZANG,Xiaoliang WU,Zhaofu QIU,Qian SUI. Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid[J]. Front. Environ. Sci. Eng., 2016, 10(3): 438-446.
[10] Wenzhen LI, Yu DING, Qian SUI, Shuguang LU, Zhaofu QIU, Kuangfei LIN. Identification and ecotoxicity assessment of intermediates generated during the degradation of clofibric acid by advanced oxidation processes[J]. Front Envir Sci Eng, 2012, 6(4): 445-454.
[11] Yuchi LEE, Shanglien LO, Jeff KUO, Chinghong HSIEH. Decomposition of perfluorooctanoic acid by microwave-activated persulfate: Effects of temperature, pH, and chloride ions[J]. Front Envir Sci Eng, 2012, 6(1): 17-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed