Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (3) : 337-344    https://doi.org/10.1007/s11783-013-0545-9
RESEARCH ARTICLE
Electrochemical oxidation of humic acid at the antimony- and nickel-doped tin oxide electrode
TANG Chengli,YAN Wei1,(),ZHENG Chunli
Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 Download: PDF(264 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This work investigated the degradation of humic acid (HA) in aqueous solution by electrochemical oxidation with Antimony- and Nickel-doped Tin oxide electrode (Ni-Sb-SnO2/Ti electrode) as the anode. Initial concentrations of HA ranged from 3 to 9 mg·L-1. Under such a concentration scope, the degradation of HA was a mass transfer controlled process. Degradation rate increased with the increase of HA initial concentration. Test on the effect of tert-butanol revealed that ·OH played an important role in the oxidation of HA. The absence of cation Ca2+ was beneficial to HA degradation, which suggested that both indirect and direct electrolyze happened during the whole electrochemical oxidation process. Alkaly (pH= 12) and neutral (pH= 7) conditions were benefical to HA degradation.

Keywords electrochemical oxidation      humic acid (HA)      natural water      Ni-Sb-SnO2/Ti electrode     
Corresponding Author(s): YAN Wei   
Issue Date: 19 May 2014
 Cite this article:   
TANG Chengli,YAN Wei,ZHENG Chunli. Electrochemical oxidation of humic acid at the antimony- and nickel-doped tin oxide electrode[J]. Front.Environ.Sci.Eng., 2014, 8(3): 337-344.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0545-9
https://academic.hep.com.cn/fese/EN/Y2014/V8/I3/337
Fig.1  SEM image of the prepared Ni-Sb-SnO2/Ti electrode
Fig.2  Cyclic voltammetry curves of the electrode in 1M NaOH (pH= 12) in the presence (red line) and absence (black line) of HA (room temperature, scan rate 0.01 V·s-1)
Fig.3  (a) Effect of HA concentration on degradation rate (b) ln[HA]0/ln[HA] vs reaction time at different HA concentrations (pH= 12, current density 28 mA·cm-2, room temperature)
Fig.4  Effect of current density on the degradation rate of HA (initial HA concentration 5 mg·L-1, pH 12, room temperature)
Fig.5  (a). Effect of Ca2+ addition on the degradation rate of HA (initial HA concentration 5 mg·L-1, pH 12, current density 20 mA·cm-2, room temperature) (b) cyclic voltammetry curves of the electrode in HA solution in the presence (red line) and absence (black line) of Ca2+ (room temperature, scan rate 0.01 V·s-1)
Fig.6  Effect of t-butanol addition on the degradation rate of HA (initial HA concentration 5 mg·L-1, pH 12, current density 20 mA·cm-2, room temperature)
Fig.7  Effects of pH on the degradation rate of HA (initial HA concentration 5 mg·L-1, current density 20 mA·cm-2, room temperature)
1 Aeschbacher M, Sander M, Schwarzenbach R P. Novel electrochemical approach to assess the redox properties of humic substances. Environmental Science & Technology, 2010, 44(1): 87–93
doi: 10.1021/es902627p pmid: 19950897
2 Aeschbacher M, Brunner S H, Schwarzenbach R P, Sander M. Assessing the effect of humic acid redox state on organic pollutant sorption by combined electrochemical reduction and sorption experiments. Environmental Science & Technology, 2012, 46(7): 3882–3890
doi: doi:10.1021/es204496d PMID:22372874
3 Li X Z, Fan C M, Sun Y P. Enhancement of photocatalytic oxidation of humic acid in TiO2 suspensions by increasing cation strength. Chemosphere, 2002, 48(4): 453–460
doi: 10.1016/S0045-6535(02)00135-2 pmid: 12152748
4 Uyguner C S, Bekbolet M. A comparative study on the photocatalytic degradation of humic substances of various origins. Desalination, 2005, 176(1–3): 167–176
doi: 10.1016/j.desal.2004.11.006
5 Shin H S, Lim K H. Spectroscopic and elemental investigation of microbial decomposition of aquatic fulvic acid in biological process of drinking water treatment. Biodegradation, 1996, 7(4): 287–295
doi: 10.1007/BF00115742
6 Chen G H, Hung Y T. Electrochemical wastewater treatment processess. In: Wang L K, Hung Y T, Shammas N K, eds. Handbook of Environmental Engineering. Totowa: The Humana Press Incorporated, 2007, 57–60
7 Steinmann P, Shotyk W. Ion chromatography of organic-rich natural waters from peatlands V. Fe2+ and Fe3+. Journal of Chromatography A, 1995, 706(1–2): 293–299
doi: 10.1016/0021-9673(95)00040-T
8 Voelker B M, Morel F M M, Sulzberger B. Iron redox cycling in surface waters: effects of humic substances and light. Environmental Science & Technology, 1997, 31(4): 1004–1011
doi: 10.1021/es9604018
9 Coates J D, Ellis D J, Blunt-Harris E L, Gaw C V, Roden E E, Lovley D R. Recovery of humic-reducing bacteria from a diversity of environments. Applied and Environmental Microbiology, 1998, 64(4): 1504–1509
pmid: 9546186
10 Lovley D R, Fraga J L, Blunt-Harris E L, Hayes L A, Phillips E J P, Coates J D. Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochimica et Hydrobiologica, 1998, 26(3): 152–157
doi: 10.1002/(SICI)1521-401X(199805)26:3<152::AID-AHEH152>3.0.CO;2-D
11 Ma J, Graham N J D. Degradation of atrazine by manganese catalysed ozonation: influence of humic substances. Water Research, 1999, 33(3): 785–793
doi: 10.1016/S0043-1354(98)00266-8
12 Schulten H R, Schnitzer M. A state of the art structural concept for humic substances. Naturwissenschaften, 1993, 80(1): 29–30
doi: 10.1007/BF01139754
13 Chen D Q, Zhang D M, Wei Z P. Study on photocatalytic degradation of humic acid by Ag deposited TiO2. Journal of Anhui Agricultural Sciences, 2010, 38(17): 9379–9381 (in Chinese)
14 Ding G Y, Li C X, Wang Y F, Fan C M, Sun Y P. Study on the photocatalytic oxidation of humic acid in the water by ferric oxide under visible-light. Applied Chemical Industry, 2009, 38(6): 788–791 (in Chinese)
15 Pan L M, Ji M, Wang X D, Zhao L J, Lu B. Kinetics of humic acid degradation by TiO2 nanotubes/UV/O3. Journal of the Chemical Industry and Engineering Society of China, 2009, 60(9): 2215–2220 (in Chinese)
16 Zhou Y, Huang K L, Zhu Z P, Yang B, Qiu H Y, Gu Y, Liu T. Preparation of Gd/N-codoped nano-TiO2 and degradation of humic acid. Journal of Central South University, 2008, 39(4): 677–681 (in Chinese)
17 Jiang Y L, Jiang Z H, Liu H L. Study on adsorption of humic acid from aqueous solution on B2O3·TiO2/Ti film. Journal of Chemical Engineering of Chinese Universities, 2007, 21(6): 954–958 (in Chinese)
18 Motheo A J, Pinhedo L. Electrochemical degradation of humic acid. The Science of the Total Environment, 2000, 256(1): 67–76
doi: 10.1016/S0048-9697(00)00469-1 pmid: 10898388
19 Bekbolet M, Uyguner C S, Selcuk H, Rizzo L, Nikolaou A D, Meric S, Belgiorno V. Application of oxidative removal of NOM to drinking water and formation of disinfection by-products. Desalination, 2005, 176(1–3): 155–166
doi: 10.1016/j.desal.2004.11.011
20 Scialdone O, Guarisco C, Galia A, Filardo G, Silvestri G, Amatore C, Sella C, Thouin L. Anodic abatement of organic pollutants in water in micro reactors. Journal of Electroanalytical Chemistry, 2010, 638(2): 293–296
doi: 10.1016/j.jelechem.2009.10.031
21 Scialdone O. Electrochemical oxidation of organic pollutants in water at metal oxide electrodes: A simple theoretical model including direct and indirect oxidation processes at the anodic surface. Electrochimica Acta, 2009, 54(26): 6140–6147
doi: 10.1016/j.electacta.2009.05.066
22 Wang Y H, Cheng S A, Chan K Y, Li X Y. Electrolytic generation of ozone on antimony- and nickel-doped tin oxide electrode. Journal of the Electrochemical Society, 2005, 152(11): D197–D200
doi: 10.1149/1.2041007
23 Wei S Q, Liu Y, Wang S Q. Electrochemical treatment of humic acid in water. Contemporary Chemical Industry, 2004, 33(6): 350–353 (in Chinese)
24 Panizza M, Cerisola G. Electrochemical oxidation as a final treatment of synthetic tannery wastewater. Environmental Science & Technology, 2004, 38(20): 5470–5475
doi: 10.1021/es049730n pmid: 15543753
25 Radha K V, Sridevi V, Kalaivani K. Electrochemical oxidation for the treatment of textile industry wastewater. Bioresource Technology, 2009, 100(2): 987–990
doi: 10.1016/j.biortech.2008.06.048 pmid: 18760596
26 Deligiorgis A, Xekoukoulotakis N P, Diamadopoulos E, Mantzavinos D. Electrochemical oxidation of table olive processing wastewater over boron-doped diamond electrodes: treatment optimization by factorial design. Water Research, 2008, 42(4–5): 1229–1237
doi: 10.1016/j.watres.2007.09.014 pmid: 17923146
27 Wang B, Chang X, Ma H. Electrochemical oxidation of refractory organics in the coking wastewater and chemical oxygen demand (COD) removal under extremely mild conditions. Industrial & Engineering Chemistry Research, 2008, 47(21): 8478–8483
doi: 10.1021/ie800826v
28 Li L, Liu Y. Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics. Journal of Hazardous Materials, 2009, 161(2–3): 1010–1016
doi: 10.1016/j.jhazmat.2008.04.047 pmid: 18511189
29 Scialdone O, Galia A, Gurreri L, Randazzo S. Electrochemical abatement of chloroethanes in water: reduction, oxidation and combined processes. Electrochimica ActA, 2010, 55(3): 701–708
doi: 10.1016/j.electacta.2009.09.039
30 Faouzi A M, Nasr B, Abdellatif G. Electrochemical degradation of anthraquinone dye Alizarin Red S by anodic oxidation on boron-doped diamond. Dyes and Pigments, 2007, 73(1): 86–89
doi: 10.1016/j.dyepig.2005.10.013
31 Oliveira R T S, Salazar-Banda G R, Santos M C, Calegaro M L, Miwa D W, Machado S A S, Avaca L A. Electrochemical oxidation of benzene on boron-doped diamond electrodes. Chemosphere, 2007, 66(11): 2152–2158
doi: 10.1016/j.chemosphere.2006.09.024 pmid: 17126378
32 Rodgers J D, Jedral W, Bunce N I. Electrochemical oxidation of chlorinated phenols. Environmental Science & Technology, 1999, 33(9): 1453–1457
doi: 10.1021/es9808189
33 Vidotti M, de Torresi S I C, Kubota L T. Cordoba de Torresi, Susana I.; Kubota, Lauro T. Electrochemical oxidation of glycine by doped nickel hydroxide modified electrode. Sensors and Actuators B, Chemical, 2008, 135(1): 245–249
doi: 10.1016/j.snb.2008.08.007
34 Martinez-Huitle C A, Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chemical Society Reviews, 2006, 35(12): 1324–1340
doi: 10.1039/b517632h pmid: 17225891
35 Stevic M C, Ignjatovic L M, Ciric-Marjanovic G, Stanisic S M, Stankovic D M, Zima J. Voltammetric behaviour and determination of 8-Hydroxyquinoline using a Glassy Carbon Paste Electrode and the theoretical study of its electrochemical oxidation mechanism. International Journal of Electrochemical Science, 2011, 6(7): 2509–2525
36 Kinumoto T, Toyoda M, Choo H S, Nose M, Iriyama Y, Abe T, Ogumi Z. Electrochemical oxidation mechanism of highly oriented pyrolytic graphite in sulfuric acid solution. ECS Transactions, 2008, 13(17): 111–118
doi: 10.1149/1.3039769
37 Li L, Liu Y. Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics. Journal of Hazardous Materials, 2009, 161(2–3): 1010–1016
doi: 10.1016/j.jhazmat.2008.04.047 pmid: 18511189
38 Silva A P, Carvalho A F, Maia G. Use of electrochemical techniques to characterize methamidophos and humic acid specifically adsorbed onto Pt and PtO films. Journal of Hazardous Materials, 2011, 186(1): 645–650
doi: doi:10.1016/j.jhazmat.2010.11.059
39 Dietz R N, Pruzansk J, Smith J D.Effect of pH on stoichiometry of iodimetric determination of ozone. Analytical Chemistry, 1973, 45(2): 402–404
doi: 10.1021/ac60324a059
40 Ding H Y, Feng Y J, Liu J F. Preparation and properties of Ti/SnO2–Sb2O5 electrodes by electrodeposition. Materials Letters, 2007, 61(27): 4920–4923
doi: 10.1016/j.matlet.2007.03.073
41 Grimm J, Bessarabov D, Maier W, Storck S, Sanderson R D. Sol-gel film-preparation of novel electrodes for the electrocatalytic oxidation of organic pollutants in water. Desalination, 1998, 115(3): 295–302
doi: 10.1016/S0011-9164(98)00048-4
42 Scialdone O, Galia A, Guarisco C, Randazzo S, Filardo G. Electrochemical incineration of oxalic acid at boron doped diamond anodes-Role of operative parameters. Electrochimica Acta, 2008, 53(5): 2095–2108
doi: 10.1016/j.electacta.2007.09.007
43 Zeng K M, Dong H S, Shi J F. Mechanism of removing dissolved humic acids from drinking water by multi-electrodes of granular activated carbon. Journal of Sichuan University (Engineering Science Edition), 2001, 33(6): 45–49 (in Chinese)
44 Jeong J, Kim C, Yoon J. The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes. Water Research, 2009, 43(4): 895–901
doi: 10.1016/j.watres.2008.11.033 pmid: 19084255
45 Scialdone O, Galia A, Filardo G. Electrochemical incineration of 1, 2-dichloroethane: effect of the electrode material. Electrochimica Acta, 2008, 53(24): 7220–7225
doi: 10.1016/j.electacta.2008.05.004
46 Scialdone O, Randazzo S, Galia A, Silvestri G. Electrochemical oxidation of organics in water: role of operative parameters in the absence and in the presence of NaCl. Water Research, 2009, 43(8): 2260–2272
doi: 10.1016/j.watres.2009.02.014 pmid: 19269668
[1] Xiangyu Wang, Yu Xie, Guizhen Yang, Jiming Hao, Jun Ma, Ping Ning. Enhancement of the electrocatalytic oxidation of antibiotic wastewater over the conductive black carbon-PbO2 electrode prepared using novel green approach[J]. Front. Environ. Sci. Eng., 2020, 14(2): 22-.
[2] Yanhui ZHAN, Jianwei LIN, Yanling QIU, Naiyun GAO, Zhiliang ZHU. Adsorption of humic acid from aqueous solution on bilayer hexadecyltrimethyl ammonium bromide-modified zeolite[J]. Front Envir Sci Eng Chin, 2011, 5(1): 65-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed