Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2014, Vol. 8 Issue (2) : 180-187    https://doi.org/10.1007/s11783-013-0552-x
RESEARCH ARTICLE
Electrocatalytic debromination of BDE-47 at palladized graphene electrode
Hongtao YU, Bin MA, Shuo CHEN(), Qian ZHAO, Xie QUAN, Shahzad AFZAL
School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
 Download: PDF(506 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Graphene electrodes (Ti/Gr) were prepared by depositing Gr sheets on Ti substrate, followed by an annealing process for enhancing the adhesion strength. Electrochemical impedance spectroscopies and X-ray diffraction patterns displayed that the electrochemical behavior of Ti/Gr electrodes can be improved due to the generation of TiO2 layer at Ti-Gr interface during the annealing process. The palladized Gr electrodes (Ti/Gr/Pd) were prepared by electrochemical depositing Pd nanoparticles on Gr sheets. The debromination ability of Ti/Gr/Pd electrodes was investigated using BDE-47 as a target pollutant with various bias potentials. The results indicated that the BDE-47 degradation rates on Ti/Gr/Pd electrodes increased with the negative bias potentials from 0 V to -0.5 V (vs. SCE). Almost all of the BDE-47 was removed in the debromination reaction on the Ti/Gr/Pd electrode at -0.5 V for 3 h, and the main product was diphenyl ethers, meaning it is promising to debrominate completely using the Ti/Gr/Pd electrode. Although the debromination rate was slightly slower at -0.3 V than that under -0.5 V, the current efficiency at -0.3 V was higher, because the electrical current acted mostly on BDE-47 rather than on water.

Keywords graphene      palladium      debromination      BDE-47     
Corresponding Author(s): CHEN Shuo,Email:shuochen@dlut.edu.cn   
Issue Date: 01 April 2014
 Cite this article:   
Hongtao YU,Bin MA,Shuo CHEN, et al. Electrocatalytic debromination of BDE-47 at palladized graphene electrode[J]. Front Envir Sci Eng, 2014, 8(2): 180-187.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0552-x
https://academic.hep.com.cn/fese/EN/Y2014/V8/I2/180
Fig.1  Electrochemical impedance spectroscopies of Ti, Ti/Gr before and after the anneal process (a) and its local amplification image taken near the origin (b). The amplitude is 0.005 V and the frequency range is from 100000 to 1 Hz
Fig.2  XRD patterns of Ti/Gr with and without the anneal process
Fig.3  SEM images of Ti/Gr (a), Ti/Gr/Pd (b); TEM images of Gr (c), Gr/Pd (d and its inset); AFM image of Gr (e)
Fig.4  Debromination of BDE-47 with Ti/Gr/Pd electrode under various bias potentials
Fig.5  GC-MS spectrum of intermediate products during the BDE-47 degradation with Ti/Gr/Pd electrode
Fig.6  Debromination of BDE-47 with Ti/Gr, Ti/Pd and Ti/Gr/Pd electrode under -0.5 V (a) and -0.3 V (b), respectively
Fig.7  Cyclic voltammetry curves of Ti/Gr/Pd and Ti/Pd in the electrolyte (0.05 M HSO in methanol/water (v∶ v= 7∶3)) with (a) or without (b) BDE-47(c) .The deference of cathode current measuring in eletrolyte with or without BDE-47.
1 Wang Y W, Jiang G B, Lam P K S, Li A. Polybrominated diphenyl ether in the East Asian environment: a critical review. Environment International , 2007, 33(7): 963–973
doi: 10.1016/j.envint.2007.03.016 pmid:17638602
2 Frederiksen M, Vorkamp K, Thomsen M, Knudsen L E. Human internal and external exposure to PBDEs—a review of levels and sources. International Journal of Hygiene and Environmental Health , 2009, 212(2): 109–134
doi: 10.1016/j.ijheh.2008.04.005 pmid:18554980
3 Law R J, Allchin C R, de Boer J, Covaci A, Herzke D, Lepom P, Morris S, Tronczynski J, de Wit C A. Levels and trends of brominated flame retardants in the European environment. Chemosphere , 2006, 64(2): 187–208
doi: 10.1016/j.chemosphere.2005.12.007 pmid:16434081
4 Talsness C E. Overview of toxicological aspects of polybrominated diphenyl ethers: a flame-retardant additive in several consumer products. Environmental Research , 2008, 108(2): 158–167
doi: 10.1016/j.envres.2008.08.008 pmid:18949835
5 Ahn M Y, Filley T R, Jafvert C T, Nies L, Hua I, Bezares-Cruz J. Photodegradation of decabromodiphenyl ether adsorbed onto clay minerals, metal oxides, and sediment. Environmental Science & Technology , 2006, 40(1): 215–220
doi: 10.1021/es051415t pmid:16433354
6 Li X, Huang J, Fang L, Yu G, Lin H, Wang L. Photodegradation of 2,2′,4,4′-tetrabromodiphenyl ether in nonionic surfactant solutions. Chemosphere , 2008, 73(10): 1594–1601
doi: 10.1016/j.chemosphere.2008.08.031 pmid:18842284
7 An T C, Chen J X, Li G Y, Ding X J, Sheng G Y, Fu J M, Mai B X, O’Shea K E. Characterization and the photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalysts: degradation of decabromodiphenyl ether (BDE 209). Catalysis Today , 2008, 139(1–2): 69–76
8 Sun C Y, Zhao D, Chen C C, Ma W H, Zhao J C. TiO2-mediated photocatalytic debromination of decabromodiphenyl ether: kinetics and intermediates. Environmental Science & Technology , 2009, 43(1): 157–162
doi: 10.1021/es801929a pmid:19209600
9 He J Z, Robrock K R, Alvarez-Cohen L. Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs). Environmental Science & Technology , 2006, 40(14): 4429–4434
doi: 10.1021/es052508d pmid:16903281
10 Robrock K R, Korytár P, Alvarez-Cohen L. Pathways for the anaerobic microbial debromination of polybrominated diphenyl ethers. Environmental Science & Technology , 2008, 42(8): 2845–2852
doi: 10.1021/es0720917 pmid:18497133
11 Konstantinov A, Bejan D, Bunce N J, Chittim B, McCrindle R, Potter D, Tashiro C. Electrolytic debromination of PBDEs in DE-83TM technical decabromodiphenyl ether. Chemosphere , 2008, 72(8): 1159–1162
doi: 10.1016/j.chemosphere.2008.03.046 pmid:18472139
12 Nose K, Hashimoto S, Takahashi S, Noma Y, Sakai S. Degradation pathways of decabromodiphenyl ether during hydrothermal treatment. Chemosphere , 2007, 68(1): 120–125
doi: 10.1016/j.chemosphere.2006.12.030 pmid:17267017
13 Bhaskar T, Hosokawa A, Muto A, Tsukahara Y, Yamauchi T, Wada Y. Enhanced debromination of brominated flame retardant plastics under microwave irradiation. Green Chemistry , 2008, 10(7): 739–742
doi: 10.1039/b807370h
14 Bonin P M L, Edwards P, Bejan D, Lo C C, Bunce N J, Konstantinov A D. Catalytic and electrocatalytic hydrogenolysis of brominated diphenyl ethers. Chemosphere , 2005, 58(7): 961–967
doi: 10.1016/j.chemosphere.2004.09.099 pmid:15639268
15 Chetty R, Christensen P A, Golding B T, Scott K. Fundamental and applied studies on the electrochemical hydrodehalogenation of halogenated phenols at a palladised titanium electrode. Applied Catalysis A, General , 2004, 271(1–2): 185–194
doi: 10.1016/j.apcata.2004.02.059
16 Yang B, Yu G, Shuai D. Electrocatalytic hydrodechlorination of 4-chlorobiphenyl in aqueous solution using palladized nickel foam cathode. Chemosphere , 2007, 67(7): 1361–1367
doi: 10.1016/j.chemosphere.2006.10.046 pmid:17141295
17 Xu Y H, Zhu Y H, Zhao F M, Ma C A. Electrocatalytic reductive dehalogenation of polyhalogenated phenols in aqueous solution on Ag electrodes. Applied Catalysis A: General , 2007, 324: 83–86
doi: 10.1016/j.apcata.2007.02.049
18 Fiori G, Rondinini S, Sello G, Vertova A, Cirja M, Conti L. Electroreduction of volatile organic halides on activated silver cathodes. Journal of Applied Electrochemistry , 2005, 35(4): 363–368
doi: 10.1007/s10800-005-0798-5
19 Cui C Y, Quan X, Yu H T, Han Y H. Electrocatalytic hydrodehalogenation of pentachlorophenol at palladized multiwalled carbon nanotubes electrode. Applied Catalysis B: Environmental , 2008, 80(1–2): 122–128
doi: 10.1016/j.apcatb.2007.11.019
20 Li Y P, Cao H B, Zhang Y. Reductive dehalogenation of haloacetic acids by hemoglobin-loaded carbon nanotube electrode. Water Research , 2007, 41(1): 197–205
doi: 10.1016/j.watres.2006.08.020 pmid:17056091
21 Cui C Y, Quan X, Chen S, Zhao H M. Adsorption and electrocatalytic dechlorination of pentachlorophenol on palladium-loaded activated carbon fibers. Separation and Purification Technology , 2005, 47(1–2): 73–79
doi: 10.1016/j.seppur.2005.06.005
22 Saez V, Gonzalez-Garcia J, Kulandainathan M A, Marken F. Electro-deposition and stripping of catalytically active iron metal nanoparticles at boron-doped diamond electrodes. Electrochemistry Communications , 2007, 9(5): 1127–1133
doi: 10.1016/j.elecom.2007.01.018
23 Chen G, Wang Z Y, Yang T, Huang D D, Xia D G. Electrocatalytic hydrogenation of 4-Cholorophenol on the glassy carbon electrode modified by composite polypyrrole/palladium film. Journal of Physical Chemistry B , 2006, 110(10): 4863–4868
doi: 10.1021/jp055669c
24 Tsyganok A I, Otsuka K. Selective dechlorination of chlorinated phenoxy herbicides in aqueous medium by electrocatalytic reduction over palladium-loaded carbon felt. Applied Catalysis B: Environmental , 1999, 22(1): 15–26
doi: 10.1016/S0926-3373(99)00028-4
25 Cheng I F, Fernando Q, Korte N. Electrochemical dechlorination of 4-chlorophenol to phenol. Environmental Science & Technology , 1997, 31(4): 1074–1078
doi: 10.1021/es960602b
26 Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications , 2008, 146(9–10): 351–355
doi: 10.1016/j.ssc.2008.02.024
27 Watanabe I, Sakai S. Environmental release and behavior of brominated flame retardants. Environment International , 2003, 29(6): 665–682
doi: 10.1016/S0160-4120(03)00123-5 pmid:12850086
28 Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society , 1958, 80(6): 1339–1339
doi: 10.1021/ja01539a017
29 Yu H T, Quan X, Chen S, Zhao H M. TiO2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability. Journal of Physical Chemistry C , 2007, 111(35): 12987–12991
doi: 10.1021/jp0728454
30 Wu Z S, Pei S F, Ren W C, Tang D M, Gao L B, Liu B L, Li F, Liu C, Cheng H M. Field emission of single-layer graphene films prepared by electrophoretic deposition. Advanced Materials , 2009, 21(17): 1756–1760
doi: 10.1002/adma.200802560
31 K?nenkamp R. Carrier transport in nanoporous TiO2 films. Physical Review B: Condensed Matter and Materials Physics , 2000, 61(16): 11057–11064
doi: 10.1103/PhysRevB.61.11057
32 Fisher A C, Peter L M, Ponomarev E A, Walker A B, Wijayantha K G U. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. Journal of Physical Chemistry B , 2000, 104(5): 949–958
doi: 10.1021/jp993220b
33 Schlichthr?l G, Huang S Y, Sprague J, Frank A J. Band edge movement and recombination kinetics in dye-sensitized nanocrystalling TiO2 sollar cells: a study by intensity modulated photovoltage spectroscopy. Journal of Physical Chemistry B , 1997, 101(41): 8141–8155
doi: 10.1021/jp9714126
34 Franco G, Gehring J, Peter L M, Ponomarev E A, Uhlendorf I. Frequency-resolved optical detection of photoinjected electrons in dye-sensitized nanocrystalline photovoltaic cells. Journal of Physical Chemistry B , 1999, 103(4): 692–698
doi: 10.1021/jp984060r
35 Natsuhara H, Ohashia T, Ogawa S. Yoshida N, Itoh T, Nonomura S, Fukawa M, Sato K. Hydrogen-radical durability of TiO2 thin films for protecting transparent conducting oxide for Si thin film solar cells. Thin Solid Films , 2003, 430(1–2): 253–256
doi: 10.1016/S0040-6090(03)00118-4
36 Chen S F, Wang C W. Effects of deposition temperature on the conduction mechanisms and reliability of radio frequency sputtered TiO2 thin films. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures , 2002, 20(1): 263–267
doi: 10.1116/1.1434971
37 Lee M H, Kim K M, Kim G H, Seok J Y, Song S J, Yoon J H, Hwang C S. Study on the electrical conduction mechanism of bipolar resistive switching TiO2 thin films using impedance spectroscopy. Applied Physics Letters , 2010, 96(15): 192909
doi: 10.1063/1.3400222
[1] Fu Chen, Qi Zhang, Jing Ma, Qianlin Zhu, Yifei Wang, Huagen Liang. Effective remediation of organic-metal co-contaminated soil by enhanced electrokinetic-bioremediation process[J]. Front. Environ. Sci. Eng., 2021, 15(6): 113-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Yan Zhang, Yuyan Zhang, Xue Li, Xiaohan Zhao, Cosmos Anning, John Crittenden, Xianjun Lyu. Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen production[J]. Front. Environ. Sci. Eng., 2020, 14(4): 69-.
[4] Chaojin Jiang, Xiaoqian Jiang, Lixun Zhang, Yuntao Guan. Enhanced debromination of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by zero-valent zinc with ascorbic acid[J]. Front. Environ. Sci. Eng., 2020, 14(3): 47-.
[5] Xingguo Guo, Qiuying Wang, Ting Xu, Kajia Wei, Mengxi Yin, Peng Liang, Xia Huang, Xiaoyuan Zhang. One-step ball milling-prepared nano Fe2O3 and nitrogen-doped graphene with high oxygen reduction activity and its application in microbial fuel cells[J]. Front. Environ. Sci. Eng., 2020, 14(2): 30-.
[6] Luman Zhou, Chengyang Wu, Yuwei Xie, Siqing Xia. Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass[J]. Front. Environ. Sci. Eng., 2020, 14(2): 27-.
[7] Xiaoyan Guo, Chunyu Li, Chenghao Li, Tingting Wei, Lin Tong, Huaiqi Shao, Qixing Zhou, Lan Wang, Yuan Liao. G-CNTs/PVDF mixed matrix membranes with improved antifouling properties and filtration performance[J]. Front. Environ. Sci. Eng., 2019, 13(6): 81-.
[8] Bei Ye, Zhuo Chen, Xinzheng Li, Jianan Liu, Qianyuan Wu, Cheng Yang, Hongying Hu, Ronghe Wang. Inhibition of bromate formation by reduced graphene oxide supported cerium dioxide during ozonation of bromide-containing water[J]. Front. Environ. Sci. Eng., 2019, 13(6): 86-.
[9] Shi Yin, Yan-Qiu Chen, Yue-Li Li, Wang-Lai Cen, Hua-Qiang Yin. Static and dynamic characteristics of SO2-O2 aqueous solution in the microstructure of porous carbon materials[J]. Front. Environ. Sci. Eng., 2018, 12(5): 12-.
[10] Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang, Zhiwei Wang. Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation[J]. Front. Environ. Sci. Eng., 2018, 12(3): 15-.
[11] Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite[J]. Front. Environ. Sci. Eng., 2018, 12(1): 4-.
[12] Nanli QIAO,Xin ZHANG,Chi HE,Yang LI,Zhongshen ZHANG,Jie CHENG,Zhengping HAO. Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts[J]. Front. Environ. Sci. Eng., 2016, 10(3): 458-466.
[13] Yu YANG,Zhicheng YU,Takayuki NOSAKA,Kyle DOUDRICK,Kiril HRISTOVSKI,Pierre HERCKES,Paul WESTERHOFF. Interaction of carbonaceous nanomaterials with wastewater biomass[J]. Front. Environ. Sci. Eng., 2015, 9(5): 823-831.
[14] Rongbing FU,Na MU,Xiaopin GUO,Zhen XU,Dongsu BI. Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron[J]. Front. Environ. Sci. Eng., 2015, 9(5): 867-878.
[15] Liqin JI, Xue BAI, Lincheng ZHOU, Hanchang SHI, Wei CHEN, Zulin HUA. One-pot preparation of graphene oxide magnetic nanocomposites for the removal of tetrabromobisphenol A[J]. Front Envir Sci Eng, 2013, 7(3): 442-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed