Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (3) : 372-378    https://doi.org/10.1007/s11783-013-0567-3
RESEARCH ARTICLE
Removal of 17β-estradiol in laccase catalyzed treatment processes
XIA Qing,KONG Deyang2,LIU Guoqiang,HUANG Qingguo3,ALALEWI Aamr,LU Junhe1,()
Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of PRC, Nanjing 210042, China
Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA
 Download: PDF(189 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The removal of 17β-estradiol (E2) in laccase catalyzed oxidative coupling processes was systematically studied in this work. We focused on the influence of pH and natural organic matter (NOM) on the performance of the enzymatic treatment processes. It was found that the optimal pH for E2 removal was between 4 and 6. The removal of E2 was slightly inhibited in the presence of NOM. Enzymatic transformation of E2 was second-order in kinetics with first-order to both the concentrations of the enzyme and contaminant. Mass spectrum (MS) analysis suggested that coupling products were formed through radical-radical coupling mechanism. The results of this study demonstrated that laccase catalyzed oxidative coupling process could potentially serve as a treatment strategy to control steroid estrogens.

Keywords 17β-estradiol      laccase      oxidative coupling processes      kinetics      mechanisms     
Corresponding Author(s): LU Junhe   
Issue Date: 19 May 2014
 Cite this article:   
XIA Qing,KONG Deyang,LIU Guoqiang, et al. Removal of 17β-estradiol in laccase catalyzed treatment processes[J]. Front.Environ.Sci.Eng., 2014, 8(3): 372-378.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0567-3
https://academic.hep.com.cn/fese/EN/Y2014/V8/I3/372
Fig.1  Influence of pH on the removal of E2 in laccase catalyzed treatment processes. (initial E2 concentration 1.0 mg·L-1, laccase concentration 1.0 unit·mL-1, and 2 h incubation, error bar represents 5% confidence intervals)
Fig.2  Influence of NOM on the removal of E2 in laccase catalyzed treatment processes. (initial E2 concentration 1.0 mg·L-1 and laccase concentration 1.0 unit·mL-1, error bar represents 95% confidence intervals)
Fig.3  Kinetics of E2 removal in laccase catalyzed processes: (a) first-order rate plots at varying enzyme dosages; (b) dependence of the apparent first-order rate constants to the enzyme dosages. Reaction conditions: [E2]0 = 10 μmol·L-1, pH 7.0
Fig.4  MS analysis of the reaction products of E2 in laccase catalyzed treatment processes. [E2]0 = 1.0 mg·L-1, pH 7.0. (a) Control in the absence of laccase; (b) after 0.05 unit·mL-1 enzyme treatment
1 Kolpin D W, Furlong E T, Meyer M T, Thurman E M, Zaugg S D, Barber L B, Buxton H T. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environmental Science & Technology, 2002, 36(6): 1202–1211
2 Snyder S A, Vanderford B J. State of knowledge of endocrine disruptors and pharmaceuticals in drinking water. Denver: AWWA Research Foundation, 2008, 1–17
3 Ternes T A, Meisenheimer M, McDowell D, Sacher F, Brauch H J, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N. Removal of pharmaceuticals during drinking water treatment. Environmental Science & Technology, 2002, 36(17): 3855–3863
doi: 10.1021/es015757k pmid: 12322761
4 Westerhoff P, Yoon Y, Snyder S, Wert E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science & Technology, 2005, 39(17): 6649–6663
doi: 10.1021/es0484799 pmid: 16190224
5 Ternes T A, Stumpf M, Mueller J, Haberer K, Wilken R D, Servos M. Behavior and occurrence of estrogens in municipal sewage treatment plants—I. Investigations in Germany, Canada and Brazil. The Science of the Total Environment, 1999, 225(1–2): 81–90
doi: 10.1016/S0048-9697(98)00334-9 pmid: 10028705
6 Ternes T A, Stüber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B. Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Research, 2003, 37(8): 1976–1982
doi: 10.1016/S0043-1354(02)00570-5 pmid: 12697241
7 Huber M M, Canonica S, Park G Y, von Gunten U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental Science & Technology, 2003, 37(5): 1016–1024
doi: 10.1021/es025896h pmid: 12666935
8 Auriol M, Filali-Meknassi Y, Tyagi R D, Adams C D. Laccase-catalyzed conversion of natural and synthetic hormones from a municipal wastewater. Water Research, 2007, 41(15): 3281–3288
doi: 10.1016/j.watres.2007.05.008 pmid: 17585984
9 Okazaki S Y, Michizoe J, Goto M, Furusaki S, Wariishi H, Tanaka H. Oxidation of bisphenol A catalyzed by laccase hosted in reversed micelles in organic media. Enzyme and Microbial Technology, 2002, 31(3): 227–232
doi: 10.1016/S0141-0229(02)00104-7
10 Mao L, Huang Q G, Luo Q, Lu J H, Yang X, Gao S X. Ligninase-mediated removal of 17β-estradiol from water in the presence of natural organic matter: efficiency and pathways. Chemosphere, 2010, 80(4): 469–473
doi: 10.1016/j.chemosphere.2010.03.054 pmid: 20416920
11 Auriol M, Filali-Meknassi Y, Adams C D, Tyagi R D, Noguerol T N, Piña B. Removal of estrogenic activity of natural and synthetic hormones from a municipal wastewater: efficiency of horseradish peroxidase and laccase from Trametes versicolor. Chemosphere, 2008, 70(3): 445–452
doi: 10.1016/j.chemosphere.2007.06.064 pmid: 17897698
12 Sei K, Takeda T, Soda S O, Fujita M, Ike M.Removal characteristics of endocrine-disrupting chemicals by laccase from white-rot fungi. Journal of Environmental Science and Health Part A–Toxic/Hazardous Substances and Environmental Engineering, 2008, 43(1): 53–60
13 Huang Q G, Weber W J. Transformation and removal of bisphenol A from aqueous phase via peroxidase mediated oxidative coupling reactions: efficacy, products, and pathways. Environmental Science & Technology, 2005, 39(16): 6029–6036
doi: 10.1021/es050036x pmid: 16173560
14 Bollag J M. Decontaminating soil with enzymes. Environmental Science & Technology, 1992, 26(10): 1876–1881
doi: 10.1021/es00034a002
15 Bollag J M. Enzymes catalyzing oxidative coupling reactions of pollutants. Metal Ions in Biological Systems, 1992, 28: 205–217
16 Dec J, Bollag J M. Phenoloxidase-mediated interactions of phenols and anilines with humic materials. Journal of Environmental Quality, 2000, 29(3): 665–676
doi: 10.2134/jeq2000.00472425002900030001x
17 Park J W, Dec J, Kim J E, Bollag J M. Effect of humic constituents on the transformation of chlorinated phenols and anilines in the presence of oxidoreductive enzymes or birnessite. Environmental Science & Technology, 1999, 33(12): 2028–2034
doi: 10.1021/es9810787
18 Auriol M, Filali-Meknassi Y, Adams C D, Tyagi R D. Natural and synthetic hormone removal using the horseradish peroxidase enzyme: temperature and pH effects. Water Research, 2006, 40(15): 2847–2856
doi: 10.1016/j.watres.2006.05.032 pmid: 16849026
19 Auriol M, Filali-Meknassi Y, Tyagi R D, Adams C D. Oxidation of natural and synthetic hormones by the horseradish peroxidase enzyme in wastewater. Chemosphere, 2007, 68(10): 1830–1837
doi: 10.1016/j.chemosphere.2007.03.045 pmid: 17498772
20 Lu J H, Huang Q G, Mao L. Removal of acetaminophen using enzyme-mediated oxidative coupling processes: I. Reaction rates and pathways. Environmental Science & Technology, 2009, 43(18): 7062–7067
doi: 10.1021/es9002422 pmid: 19806742
21 Kim Y J, Nicell J A. Impact of reaction conditions on the laccase-catalyzed conversion of bisphenol A. Bioresource Technology, 2006, 97(12): 1431–1442
doi: 10.1016/j.biortech.2005.06.017 pmid: 16122923
22 Murugesan K, Chang Y Y, Kim Y M, Jeon J R, Kim E J, Chang Y S. Enhanced transformation of triclosan by laccase in the presence of redox mediators. Water Research, 2010, 44(1): 298–308
doi: 10.1016/j.watres.2009.09.058 pmid: 19854464
23 Hua G, Reckhow D A. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size. Environmental Science & Technology, 2007, 41(9): 3309–3315
doi: 10.1021/es062178c pmid: 17539542
24 Chen C, Zhang X J, Zhu L X, Liu J, He W J, Han H D. Disinfection by-products and their precursors in a water treatment plant in North China: Seasonal changes and fraction analysis. Science of the Total Environment, 2008, 397(1–3): 140–147
doi: 10.1016/j.scitotenv.2008.02.032 pmid: 18400262
25 Seidel A, Elimelech M. Coupling between chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes: implications for fouling control. Journal of Membrane Science, 2002, 203(1–2): 245–255
doi: 10.1016/S0376-7388(02)00013-3
26 Makdissy G, Croue J P, Amy G, Buisson H. Fouling of a polyethersulfone ultrafiltration membrane by natural organic matter. Water Supply: The Review Journal of The International Water Supply Association, 2004, 4(4): 205–212
27 Kaiya Y, Itoh Y, Fujita K, Takizawa S. Study on fouling materials in the membrane treatment process for potable water. Desalination, 1996, 106(1–3): 71–77
28 Westerhoff P, Mezyk S P, Cooper W J, Minakata D. Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee River fulvic acid and other dissolved organic matter isolates. Environmental Science & Technology, 2007, 41(13): 4640–4646
doi: 10.1021/es062529n pmid: 17695909
29 Legrini O, Oliveros E, Braun A M. Peotochemical processes for water-treatment. Chemical Reviews, 1993, 93(2): 671–698
doi: 10.1021/cr00018a003
30 Wang J S, Araki T, Matsuoka M, Ogawa T. A graphical method of analyzing pH dependence of enzyme activity. Biochim Biophys Acta, 1999, 1435(1–2): 177–183
doi: 10.1016/S0167-4838(99)00207-1 pmid: 10561550
31 Lu J H, Huang Q G. Removal of acetaminophen using enzyme-mediated oxidative coupling processes: II. Cross-coupling with natural organic matter. Environmental Science & Technology, 2009, 43(18): 7068–7073
doi: 10.1021/es9001295 pmid: 19806743
32 Keum Y S, Li Q X. Copper dissociation as a mechanism of fungal laccase denaturation by humic acid. Applied Microbiology and Biotechnology, 2004, 64(4): 588–592
doi: 10.1007/s00253-003-1460-y pmid: 14564487
33 Weber W J Jr, Huang Q G. Inclusion of persistent organic pollutants in humification processes: direct chemical incorporation of phenanthrene via oxidative coupling. Environmental Science & Technology, 2003, 37(18): 4221–4227
doi: 10.1021/es030330u pmid: 14524456
34 Huang Q G, Weber W J Jr. Peroxidase-catalyzed coupling of phenol in the presence of model inorganic and organic solid phases. Environmental Science & Technology, 2004, 38(19): 5238–5245
doi: 10.1021/es049826h pmid: 15506223
35 Solomon E I, Sundaram U M, Machonkin T E. Multicopper oxidases and oxygenases. Chemical Reviews, 1996, 96(7): 2563–2606
doi: 10.1021/cr950046o pmid: 11848837
36 Leonowicz A, Cho N S, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J. Fungal laccase: properties and activity on lignin. Journal of Basic Microbiology, 2001, 41(3–4): 185–227
doi: 10.1002/1521-4028(200107)41:3/4<185::AID-JOBM185>3.0.CO;2-T pmid: 11512451
37 Huang Q G, Tang J X, Weber W J Jr. Precipitation of enzyme-catalyzed phenol oxidative coupling products: background ion and pH effects. Water Research, 2005, 39(13): 3021–3027
doi: 10.1016/j.watres.2005.05.005 pmid: 15979682
[1] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[2] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
[3] G. S. Muthu Iswarya, B. Nirkayani, A. Kavithakani, V. C. Padmanaban. Statistical modeling of radiolytic (60Co g) degradation of Ofloxacin, antibiotic: Synergetic effect, kinetic studies & assessment of its degraded metabolites[J]. Front. Environ. Sci. Eng., 2019, 13(3): 42-.
[4] Xiaoxia Ou, Jianfang Yan, Fengjie Zhang, Chunhua Zhang. Accelerated degradation of orange G over a wide pH range in the presence of FeVO4[J]. Front. Environ. Sci. Eng., 2018, 12(1): 7-.
[5] Yuanyuan Shi, Deyang Kong, Jiayang Liu, Junhe Lu, Xiaoming Yin, Quansuo Zhou. Transformation of triclosan by a novel cold-adapted laccase from Botrytissp. FQ[J]. Front. Environ. Sci. Eng., 2017, 11(3): 6-.
[6] Xiuning HUA,Wei WANG,Feng WANG. Performance and kinetics of iron-based oxygen carriers reduced by carbon monoxide for chemical looping combustion[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1130-1138.
[7] Man ZHANG,Feng HE,Dongye ZHAO. Catalytic activity of noble metal nanoparticles toward hydrodechlorination: influence of catalyst electronic structure and nature of adsorption[J]. Front. Environ. Sci. Eng., 2015, 9(5): 888-896.
[8] Xiaoliu HUANGFU,Yaan WANG,Yongze LIU,Xixin LU,Xiang ZHANG,Haijun CHENG,Jin JIANG,Jun MA. Effects of humic acid and surfactants on the aggregation kinetics of manganese dioxide colloids[J]. Front. Environ. Sci. Eng., 2015, 9(1): 105-111.
[9] Pengfei LIN,Yuan ZHANG,Xiaojian ZHANG,Chao CHEN,Yuefeng XIE,Irwin H SUFFET. The influence of chlorinated aromatics' structure on their adsorption characteristics on activated carbon to tackle chemical spills in drinking water source[J]. Front. Environ. Sci. Eng., 2015, 9(1): 138-146.
[10] Jian XU, Yan HE, Yuan ZHANG, Changsheng GUO, Lei LI, Yuqiu WANG. Removal of sulfadiazine from aqueous solution on kaolinite[J]. Front Envir Sci Eng, 2013, 7(6): 836-843.
[11] Qing ZHANG. Predictive models on photolysis and photoinduced toxicity of persistent organic chemicals[J]. Front Envir Sci Eng, 2013, 7(6): 803-814.
[12] Wei SUN, Meiying XU, Chunyu XIA, Anhua LI, Guoping SUN. Enhanced production of laccase by Coriolus hirsutus using molasses distillery wastewater[J]. Front Envir Sci Eng, 2013, 7(2): 200-210.
[13] Yan MA, Naiyun GAO, Wenhai CHU, Cong LI. Removal of phenol by powdered activated carbon adsorption[J]. Front Envir Sci Eng, 2013, 7(2): 158-165.
[14] Shucai LI, Tingting LI, Gang LI, Fengmei LI, Shuhai GUO. Enhanced electrokinetic remediation of chromium-contaminated soil using approaching anodes[J]. Front Envir Sci Eng, 2012, 6(6): 869-874.
[15] Chunhua XU, Dandan CHENG, Baoyu GAO, Zhilei YIN, Qinyan YUE, Xian ZHAO. Preparation and characterization of β-FeOOH-coated sand and its adsorption of Cr(VI) from aqueous solutions[J]. Front Envir Sci Eng, 2012, 6(4): 455-462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed