Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (3) : 345-356    https://doi.org/10.1007/s11783-013-0574-4
RESEARCH ARTICLE
Benzene removal by nano magnetic particles under continuous condition from aqueous solutions
Amin Mohammad Mehdi,Bina Bijan,Majd Amir Masoud Samani2,Pourzamani Hamidreza1,()
Environment Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
BAEN Department, Texas A&M University, TX 77843, USA
 Download: PDF(323 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Benzene removal from aqueous solutions was evaluated using Fe3O4 nano magnetic particles (NM) in continuous condition. A 44 factorial design including initial benzene concentration, NM dose, contact time and pH was investigated in 16 experiments (Taguchi OA design). The results indicated that all factors were significant and the optimum condition was: pH 8, NM dose of 2000 mg·L-1, benzene concentrations of 100 mg·L-1 and contact time of 14 min. The maximum benzene uptake and distribution ratio in the optimum situation were 49.4 mg·g-1 and 38.4 L·g-1, respectively. The nano particles were shown to capture 98.7% of the benzene in optimum batch condition and 94.5% in continuous condition. The isotherm data proved that the Brunauer-Emmett-Teller model fit more closely and produced an isotherm constant (b) less than one, indicating favorable adsorption. Regeneration studies verified that the benzene adsorbed by the NM could be easily desorbed by temperature, and thereby, NM can be employed repeatedly in water and wastewater management.

Keywords benzene, experimental design, Fe3O4      continues condition, thermal recycling     
Corresponding Author(s): Pourzamani Hamidreza   
Issue Date: 19 May 2014
 Cite this article:   
Amin Mohammad Mehdi,Bina Bijan,Majd Amir Masoud Samani, et al. Benzene removal by nano magnetic particles under continuous condition from aqueous solutions[J]. Front.Environ.Sci.Eng., 2014, 8(3): 345-356.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0574-4
https://academic.hep.com.cn/fese/EN/Y2014/V8/I3/345
Fig.1  Up flow magnetic column used for continues experiments
Parametervalue
incubation time25 min
incubation temperature70°C
sample loop volume250 μL
syringe/transfer line temperature110°C
flash time2 min with N2
loop fill time0.03 min
injection time1 min
sample volume2 mL in 10 mL vials
Tab.1  
Fig.2  XRD pattern of Fe3O4
Fig.3  TEM monograph of Fe3O4
factorslevel 1level 2level 3level 4
benzene concentration /(mg·L-1)103070100
NM dose /(mg·L-1)500100015002000
contact time /min281420
pH25814
Tab.2  
runfactorsresponse1: benzene
benzene concentration /(mgs·L-1)NM dose /(mg·L-1)time /minpHCt/(mg·L-1)R /%qe /(mg·g-1)KD /(L·g-1)
130500884.4±0.185.351.211.6
23020001481.6±0.194.714.28.9
31015001480.6±0.194.36.310.9
47050014114.1±0.394.1131.832.1
5101000852.3±0.177.37.73.4
63010002118.2±0.372.821.82.7
7100100014213.8±0.386.286.26.2
810200020110.4±0.195.74.811.1
93015002210.4±0.165.413.11.3
1010020002081.4±0.398.649.335.4
111005002058.3±0.191.7183.422
12100150081111.1±0.188.959.35.3
13702000829.8±0.28630.13.1
147015002510.7±0.284.739.53.7
1510500223.9±0.160.512.13.1
167010002083.2±0.395.466.821
Tab.3  
factor/interactiondegree of freedomsum of squaresmean squaresF valueprob>F% contribution
A: benzene conc. /(mg·L-1)31235412594<0.000121.4
B: NM dose /(mg·L-1)31030344495<0.000117.9
C: contact time /min328589531374<0.000149.5
D: pH3498166239<0.00018.6
AB interaction31284362<0.00012.2
lack of fit30210.70.4
pure error00.0000.000
residuals30210.7
Tab.4  
Fig.4  Design expert plot of factors effect on benzene removal by NM in: (a) benzene concentration, (b) NM dose, (c) contact time, (d) pH
runfactorsresponse1: benzene
benzene concentration /(mg·L-1)NM dose /(mg·L-1)time /minpHCt /(mg·L-1)R /%qe /(mg·g-1)KD /(L·g-1)
1100.3±1.920002813.8±0.386.243.13.1
2100±2.12000889.2±1.690.845.44.9
3100±2.420001485.6±0.194.447.28.4
4100±220002085.5±0.394.547.28.5
Tab.5  
Fig.5  Benzene removal efficiency by nano magnetic column in different retention time
Fig.6  Comparison of benzene removal efficiency by NM in batch and continues experiments
initial benzene concentration /(mg·L-1)adsorption capacity (qe) /(mg·g-1)
00.0
104.8
209.2
3013.1
4016.5
5022.2
6027.6
7030.1
8035.4
9041.5
10049.4
Tab.6  
isothermsAICcRy2RN2M2linearity assessment
BET8.10.9930.9436.7×101non-linear
Linear10.70.9900.8284.6×10-9linear
Langmuir10.70.9900.8283×10-9linear
F-P10.70.9900.8287.6×10-9linear
L-P13.90.9900.8284×102non-linear
Freundlich13.90.9900.8342×101non-linear
P-P16.70.9900.7894.7×10-1non-linear
GLF170.9900.9864.9×101non-linear
Toth47.90.94208722.4non-linear
Polanyi58.10.0000.983uncertain
Tab.7  
parameter or statisticISOFIT result
overall quality of fitweighted sum of squared error1.3×101
root of mean square error1.2
Ry0.997
parameter statisticsbQ07.5×102
b1.7×10-3
parameter std. errorbQ01.8×101
b1.7×10-1
test of assumptions Linssen (M2)M26.7×101
threshold0.2
assessmentnon-linear
normality (RN2)RN20.943
critical value0.861
assessmentnormal residuals
runs testnumber of runs5
p-value0.89
assessmentno correlation
Durbine Watson test (D)D1.3
p-value0.699
assessmentno correlation
Tab.8  
Fig.7  Plots of fitted isotherms and observed data: (a) Toth, P-P, GLF, Polanyi; (b) linear, Freundlich, Langmuir, F-P, L-P, BET
adsorbentbenzene
C0 /(mg·L-1)Ct /(mg·L-1)removal percent /%
raw NM1001.498.7
NMrec11002.297.8
NMrec21002.697.4
Tab.9  
Fig.8  Design expert plot for raw and recycled NM in benzene removal at optimum condition
adsorbentsqe /(mg·g-1)conditionreference
NM183.4pH: 5, T: 25, S/L: 0.5/1000, C0 = 100, Ct= 0.3present study
CNT18.1pH: 7, T: 25, S/L: 0.06/100, C0 = 200[11]
diatomite0.2pH: 8.54, T: 20, S/L: 33/100–5/100, C0 = 50, Ct= 240[7]
GAC183.3pH: 7, T: 30, S/L: 0.15/100, C0 = 35–442[27]
organominerals28.8S/L: 0.1/25, C0=100, Ct=18[20]
PAC4.76pH: 6.5, T: 25, S/L: 0.5/100, C0 = 10, Ct= 72[19]
Tab.10  
adsorbentsKD /(L·g-1)conditionreference
NM38.4pH: 8, T: 25, S/L: 0.2/100, C0 = 100, Ct= 14present study
peach stones (PS)0.428T: 25, S/L: 0.1/100, C0 = 10[19]
Tab.11  
1 Tang X, Xu Y, Shen W. Promoting effect of copper on the catalytic activity of MnOx–CeO2 mixed oxide for complete oxidation of benzene. Chemical Engineering Journal, 2008, 144(2): 175–180
doi: 10.1016/j.cej.2008.01.016
2 Aly Hassan A A, Sorial G A. Removal of benzene under acidic conditions in a controlled Trickle Bed Air Biofilter. Journal of Hazardous Materials, 2010, 184(1–3): 345–349
doi: 10.1016/j.jhazmat.2010.08.042 pmid: 20869171
3 van Afferden M, Rahman K Z, Mosig P, De Biase C, Thullner M, Oswald S E, Müller R A. Remediation of groundwater contaminated with MTBE and benzene: the potential of vertical-flow soil filter systems. Water Research, 2011, 45(16): 5063–5074
doi: 10.1016/j.watres.2011.07.010 pmid: 21794890
4 Aurell J, Gullett B K, Tabor D, Touati A, Oudejans L. Semivolatile and volatile organic compound emissions from wood-fired hydronic heaters. Environmental Science & Technology, 2012, 46(14): 7898–7904
doi: 10.1021/es301197d pmid: 22765760
5 Juretic D, Kusic H, Koprivanac N, Loncaric Bozic A.Photooxidation of benzene-structured compounds: Influence of substituent type on degradation kinetic and sum water parameters. Water Research, 2012, 46(9): 3074–3084
6 Mathur A K, Majumder C B, Chatterjee S. Combined removal of BTEX in air stream by using mixture of sugar cane bagasse, compost and GAC as biofilter media. Journal of Hazardous Materials, 2007, 148(1–2): 64–74
doi: 10.1016/j.jhazmat.2007.02.030 pmid: 17397996
7 Aivalioti M, Vamvasakis I, Gidarakos E. BTEX and MTBE adsorption onto raw and thermally modified diatomite. Journal of Hazardous Materials, 2010, 178(1–3): 136–143
doi: 10.1016/j.jhazmat.2010.01.053 pmid: 20133057
8 Shim H, Shin E, Yang S T. A continuous fibrous-bed bioreactor for BTEX biodegradation by a co-culture of Pseudomonas putida and Pseudomonas fluorescens. Advances in Environmental Research, 2002, 7(1): 203–216
doi: 10.1016/S1093-0191(01)00132-0
9 Changsuphan A, Wahab M I B A, Kim Oanh N T. Removal of benzene by ZnO nanoparticles coated on porous adsorbents in presence of ozone and UV. Chemical Engineering Journal, 2012, 181–182(0): 215–221
doi: 10.1016/j.cej.2011.11.064
10 Long C, Li Q, Li Y, Liu Y, Li A, Zhang Q. Adsorption characteristics of benzene–chlorobenzene vapor on hypercrosslinked polystyrene adsorbent and a pilot-scale application study. Chemical Engineering Journal, 2010, 160(2): 723–728
doi: 10.1016/j.cej.2010.03.074
11 Lu C, Su F, Hu S. Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions. Applied Surface Science, 2008, 254(21): 7035–7041
doi: 10.1016/j.apsusc.2008.05.282
12 Zhang M, He F, Zhao D, Hao X. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Water Research, 2011, 45(7): 2401–2414
doi: 10.1016/j.watres.2011.01.028 pmid: 21376362
13 Wagner A, Cooper M, Ferdi S, Seifert J, Adrian L. Growth of Dehalococcoides mccartyi strain CBDB1 by reductive dehalogenation of brominated benzenes to benzene. Environmental Science & Technology, 2012, 46(16): 2318–2323
doi: 10.1021/es3003519 pmid: 22800291
14 Lin S H, Huang C Y. Adsorption of BTEX from aqueous solution by macroreticular resins. Journal of Hazardous Materials, 1999, 70(1–2): 21–37
doi: 10.1016/S0304-3894(99)00148-X pmid: 10611426
15 Carmody O, Frost R, Xi Y, Kokot S. Adsorption of hydrocarbons on organo-clays—implications for oil spill remediation. Journal of Colloid and Interface Science, 2007, 305(1): 17–24
doi: 10.1016/j.jcis.2006.09.032 pmid: 17046013
16 Bina B, Pourzamani H, Rashidi A, Amin M M. Ethylbenzene removal by carbon nanotubes from aqueous solution. Journal of Environmental and Public Health, 2011, 2012(2012): 1–8
doi: 10.1155/2012/817187
17 Pourzamani H, Bina B, Rashidi A, Amin M M. Performance of raw and regenerated multi-and single-walled carbon nanotubes in xylene removal from aqueous solutions. International Journal of Environmental Health Engineering, 2012, 1(4): 20–23
doi: 10.4103/2277-9183.94388
18 Wang Y H, Lin S H, Juang R S. Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents. Journal of Hazardous Materials, 2003, 102(2–3): 291–302
doi: 10.1016/S0304-3894(03)00218-8 pmid: 12972244
19 Daifullah A A M, Girgis B S. Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 214(1–3): 181–193
doi: 10.1016/S0927-7757(02)00392-8
20 Koh S M, Dixon J B. Preparation and application of organo-minerals as sorbents of phenol, benzene and toluene. Applied Clay Science, 2001, 18(3–4): 111–122
doi: 10.1016/S0169-1317(00)00040-5
21 Bina B, Amin M M, Rashidi A, Pourzamani H. Benzene and toluene removal by carbon nanotubes from aqueous solution. Archives of Environmental Protection, 2012, 38(1): 3–25
doi: 10.2478/v10265-012-0001-0
22 Matott L S, Rabideau A J. ISOFIT–a program for fitting sorption isotherms to experimental data. Environmental Modelling & Software, 2008, 23(5): 670–676
doi: 10.1016/j.envsoft.2007.08.005
23 Qadri S, Ganoe A, Haik Y. Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. Journal of Hazardous Materials, 2009, 169(1–3): 318–323
doi: 10.1016/j.jhazmat.2009.03.103 pmid: 19406571
24 Brasil J L, Ev R R, Milcharek C D, Martins L C, Pavan F A, dos Santos A A Jr, Dias S L, Dupont J, Zapata Noreña C P, Lima E C. Statistical design of experiments as a tool for optimizing the batch conditions to Cr(VI) biosorption on Araucaria angustifolia wastes. Journal of Hazardous Materials, 2006, 133(1–3): 143–153
doi: 10.1016/j.jhazmat.2005.10.002 pmid: 16297543
25 Chen J, Li G, Huang Y, Zhang H, Zhao H, An T. Optimization synthesis of carbon nanotubes-anatase TiO2 composite photocatalyst by response surface methodology for photocatalytic degradation of gaseous styrene. Applied Catalysis B: Environmental, 2012, 123–124(0): 69–77
doi: 10.1016/j.apcatb.2012.04.020
26 Sun L, An T C, Wan S G, Li G Y, Bao N Z, Hu X H, Fu J M, Sheng G Y. Effect of synthesis conditions on photocatalytic activities of nanoparticulate TiO2 thin films. Separation and Purification Technology, 2009, 68(1): 83–89
doi: 10.1016/j.seppur.2009.04.011
27 Yang Y K, Chuang M T, Lin S S. Optimization of dry machining parameters for high-purity graphite in end milling process via design of experiments methods. Journal of Materials Processing Technology, 2009, 209(9): 4395–4400
doi: 10.1016/j.jmatprotec.2008.11.021
28 Bystrzejewski M, Pyrzynska K, Huczko A, Lange H. Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. Carbon, 2009, 47(4): 1201–1204
doi: 10.1016/j.carbon.2009.01.007
29 Shen Y F, Tang J, Nie Z H, Wang Y D, Ren Y, Zuo L. Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water. Bioresource Technology, 2009, 100(18): 4139–4146
doi: 10.1016/j.biortech.2009.04.004 pmid: 19414249
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed