Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (4) : 496-502    https://doi.org/10.1007/s11783-013-0578-0
RESEARCH ARTICLE
Optimization of methyl orange removal from aqueous solution by response surface methodology using spent tea leaves as adsorbent
Liangzhi LI1,2,*(),Xiaolin LI3,Ci YAN1,2,Weiqiang GUO1,2,Tianyi YANG1,2,Jiaolong FU1,2,Jiaoyan TANG1,2,Cuiying HU1,2
1. School of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215011, China
2. Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
3. Beijing Entry-exit Inspection and Quarantine, Beijing 100026, China
 Download: PDF(607 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effective disposal of redundant tea waste is crucial to environmental protection and comprehensive utilization of trash resources. In this work, the removal of methyl orange (MO) from aqueous solution using spent tea leaves as the sorbent was investigated in a batch experiment. First, the effects of various parameters such as temperature, adsorption time, dose of spent tea leaves, and initial concentration of MO were investigated. Then, the response surface methodology (RSM), based on Box–Behnken design, was employed to obtain the optimum adsorption conditions. The optimal conditions could be obtained at an initial concentration of MO of 9.75 mg·L-1, temperature of 35.3°C, contact time of 63.8 min, and an adsorbent dosage 3.90 g·L-1. Under the optimized conditions, the maximal removal of MO was 58.2%. The results indicate that spent tea leaves could be used as an effective and economical adsorbent in the removal of MO from aqueous solution.

Keywords spent tea leaves      adsorption      response surface methodology      methyl orange (MO)     
Corresponding Author(s): Liangzhi LI   
Issue Date: 11 June 2014
 Cite this article:   
Liangzhi LI,Xiaolin LI,Ci YAN, et al. Optimization of methyl orange removal from aqueous solution by response surface methodology using spent tea leaves as adsorbent[J]. Front.Environ.Sci.Eng., 2014, 8(4): 496-502.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0578-0
https://academic.hep.com.cn/fese/EN/Y2014/V8/I4/496
factors and its codeslevels of factors
-10+1
contact time (A) / min30.0060.0090.00
initial concentration of MO in solution (B)/( mg·L-1)4.008.0012.00
Temperature(C)/°C25.0035.0045.00
biosorbent dosage(D)/ g0.200.400.60
Tab.1  The level of variables chosen for the trials
runA /minB/( mg·L-1)C/°CD/gY/%
100+1+149.81
2000056.40
3-10-1052.01
40+10-152.99
50+10+153.28
6-100+152.13
7-1+10053.24
80-10-138.28
900+1-152.32
10-100-153.77
11-1+10053.82
1200-1-151.07
130+1+1053.95
14-1-10041.04
15000056.40
16-10-1052.89
17-100+154.08
18000056.40
19-1-10037.65
200-10+139.78
210+1-1052.44
220-1+1037.78
23-100-152.51
240-1-1040.97
25-10+1051.63
2600-1+151.64
27-10+1051.00
Tab.2  Experimental design and the related results
Fig.1  Effect of temperature on MO removal. MO concentration= 6 mg·L-1; spent tea leaves= 2 g·L-1; and time= 90 min
Fig.2  Effect of biosorbent dosage on MO removal. MO concentration= 6 mg·L-1, temperature=35°C, and time= 90 min
Fig.3  Effect of initial concentration of MO on MO removal. Spent tea dosage= 4 g·L-1, temperature=35 °C, and time= 90 min
Fig.4  Effect of contact time on MO removal. Initial MO concentration= 6 mg·L-1, spent tea leaves=2 g·L-1, and temperature=35 °C
sourcesum of squaresdfmean squareF valueP-valueProb>F
model954.691186.79186.14<0.0001significant
A6.2916.2913.500.0023
B591.081591.081267.70<0.0001
C1.7111.713.670.0747
D4.03E-0314.03E-038.650E-030.9271
AB1.9711.974.230.0574
BC5.5215.5211.840.0036
CD2.3712.375.090.0395
A214.5114.5031.09<0.0001
B2338.571338.57726.12<0.0001
C238.34138.3482.23<0.0001
D224.94124.9453.49<0.0001
residual6.99150.47
lack of fit6.99130.54
pure error0.0020
cor total961.6826
Tab.3  Variance analysis of the Box-Behnken experimental design
Std. dev.0.68R20.9927
mean49.97adjusted R20.9874
C.V.%1.37predicted R20.9707
press28.20adequate precision42.220
Tab.4  Statistical analysis for the MO removal by response surface model fitting
Fig.5  The 3D response surface plots showing the effects of interactions (a) contact time of initial MO concentration on MO removal; (b) initial MO concentration-temperature on the percent of MO removal; and (c) temperature-adsorbent dose on the percent of MO removal. Note: A: time (min); B:MO concentration (mg·L-1); C: temperature (°C); D: adsorbent dosage (g·L-1); and Y: removal rate of MO (%)
1 DeviL G, KumarS G, Anantha RajuK S, Eraiah RajashekharK. Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium: influence of oxidation states of iron. Chemical Papers, 2010, 64(3): 378–385
doi: 10.2478/s11696-010-0011-0
2 HeJ, CaiQ Z, LuoQ, ZhangD Q, TangT T, JiangF Y. Photocatalytic removal of methyl orange in an aqueous solution by a WO3/TiO2 composite film. Korean Journal of Chemical Engineering, 2010, 27(2): 435–438
doi: 10.1007/s11814-010-0080-3
3 LiuR H, ShengG P, SunM, ZangG L, LiW W, TongZ H, DongF, LamM H, YuH Q. Enhanced reductive degradation of methyl orange in a microbial fuel cell through cathode modification with redox mediators. Applied Microbiology and Biotechnology, 2011, 89(1): 201–208
doi: 10.1007/s00253-010-2875-x pmid: 20852994
4 AsuhaS, GaoY W, DeligeerW, YuM, SuyalaB, ZhaoS. Adsorptive removal of methyl orange using mesoporous maghemite. Journal of Porous Materials, 2011, 18(5): 581–587
doi: 10.1007/s10934-010-9412-2
5 AnsariR, MosayebzadehZ. Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters. Chemical Papers, 2011, 65(1): 1–8
doi: 10.2478/s11696-010-0083-x
6 AbdullahA H, AbdullahE A, ZainalZ, HusseinM Z, BanT K. Adsorptive performance of penta-bismuth hepta-oxide nitrate, Bi?O?NO?, for removal of methyl orange dye. Water Sci Technol, 2012, 65(9): 1632–1638
doi: 10.2166/wst.2012.057 pmid: 22508126
7 TanyildiziM S. Modeling of adsorption isotherms and kinetics of reactive dye from aqueous solution by peanut hull. Chemical Engineering Journal, 2011, 168(3): 1234–1240
doi: 10.1016/j.cej.2011.02.021
8 YuJ X, ChiR A, HeZ Y, QiY F. Adsorption performances of cationic dyes from aqueous solution on pyromellitic dianhydride modified sugarcane bagasse. Separation Science and Technology, 2011, 46(3): 452–459
doi: 10.1080/01496395.2010.510125
9 HameedB H. Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. Journal of Hazardous Materials, 2009, 161(2–3): 753–759
doi: 10.1016/j.jhazmat.2008.04.019 pmid: 18499346
10 TunçO, TanaciH, AksuZ. Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye. Journal of Hazardous Materials, 2009, 163(1): 187–198
doi: 10.1016/j.jhazmat.2008.06.078 pmid: 18675510
11 ZhangW, LiH, KanX, DongL, YanH, JiangZ, YangH, LiA, ChengR. Adsorption of anionic dyes from aqueous solutions using chemically modified straw. Bioresource Technology, 2012, 117: 40–47
doi: 10.1016/j.biortech.2012.04.064 pmid: 22609712
12 HameedB H, AhmadA A. Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. Journal of Hazardous Materials, 2009, 164(2–3): 870–875
doi: 10.1016/j.jhazmat.2008.08.084 pmid: 18838221
13 NasuhaN, HameedB H, DinA T. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. Journal of Hazardous Materials, 2010, 175(1–3): 126–132
doi: 10.1016/j.jhazmat.2009.09.138 pmid: 19879046
14 NasuhaN, HameedB H. Adsorption of methylene blue from aqueous solution onto NaOH-modified rejected tea. Chemical Engineering Journal, 2011, 166(2): 783–786
doi: 10.1016/j.cej.2010.11.012
15 MalkocE. Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis. Journal of Hazardous Materials , 2006, 137(2): 899–908
doi: 10.1016/j.jhazmat.2006.03.004 pmid: 16621254
16 HameedB H, MahmoudD K, AhmadA L. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste. Journal of Hazardous Materials, 2008, 158(1): 65–72
doi: 10.1016/j.jhazmat.2008.01.034 pmid: 18308467
17 BhattiH N, AkhtarN, SaleemN. Adsorptive removal of methylene blue by low-cost Citrus sinensis bagasse: equilibrium, kinetic and thermodynamic characterization. Arab Journal of Science Engineering, 2012, 37(1): 9–18
doi: 10.1007/s13369-011-0158-1
18 VijayaraghavanK, PalaniveluK, VelanM. Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresource Technology, 2006, 97(12): 1411–1419
doi: 10.1016/j.biortech.2005.07.001 pmid: 16112568
19 ÖzacarM, SengilI A. A kinetic study of metal complex dye sorption onto pine sawdust. Process Biochemistry, 2005, 40(2): 565–572
doi: 10.1016/j.procbio.2004.01.032
20 PonnusamiV, AravindhanR, Karthik rajK, RamadossG, SrivastavaS N. Adsorption of methylene blue on to gulmohar plant leaf powder: equilibrium, kinetic and thermodynamic analysis. Journal of Environmental Protection Science, 2009, 3: 1–10
21 HanR, ZouW, YuW, ChengS, WangY, ShiJ. Biosorption of methylene blue from aqueous solution by fallen phoenix tree’s leaves. Journal of Hazardous Materials, 2007, 141(1): 156–162
doi: 10.1016/j.jhazmat.2006.06.107 pmid: 16901629
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Haoran Feng, Min Liu, Wei Zeng, Ying Chen. Optimization of the O3/H2O2 process with response surface methodology for pretreatment of mother liquor of gas field wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 78-.
[4] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[5] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[6] Yan Zhang, Yuyan Zhang, Xue Li, Xiaohan Zhao, Cosmos Anning, John Crittenden, Xianjun Lyu. Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen production[J]. Front. Environ. Sci. Eng., 2020, 14(4): 69-.
[7] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[8] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[9] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[10] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[11] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[12] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[13] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[14] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[15] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed