Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (3) : 357-371    https://doi.org/10.1007/s11783-013-0580-6
RESEARCH ARTICLE
Simultaneous quantification of several classes of antibiotics in water, sediments, and fish muscles by liquid chromatography–tandem mass spectrometry
WEI Yimei1,2,ZHANG Yuan2,XU Jian2,(),GUO Changsheng2,LI Lei2,FAN Wenhong3
College of Environment, Liaoning University, Shenyang 110036, China
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Department of Environmental Science and Engineering, School of Chemistry and Environment, Beihang University, Beijing 100191, China
 Download: PDF(534 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Precise and sensitive methods for the simultaneous determination of different classes of antibiotics, including sulphonamides, fluoroquinolones, macrolides, tetracyclines, and trimethoprim in surface water, sediments, and fish muscles were developed. In water samples, drugs were extracted with solid-phase extraction (SPE) by passing 1000 mL of water through hydrophilic lipophilic balanced (HLB) SPE cartridges. Sediment samples were solvent-extracted, followed by tandem SPE (strong anion exchange (SAX) + HLB) clean-ups. Fish muscles were extracted by a mixture of acetonitrile and citric buffer (80:20, v/v) solution, and cleaned by SPE. Liquid chromatography–tandem mass spectrometry (LC-MS/MS) with multiple reaction monitoring (MRM) detection was employed to quantify all compounds. The recoveries for the antibiotics in the spiked water, sediment, and fish samples were 60.2%–95.8%, 48.1%–105.3%, and 59.8%–103.4%, respectively. The methods were applied to samples taken from Dianchi Lake, China. It showed that concentrations of the detected antibiotics ranged from limits of quantification (LOQ) to 713.6 ng·L-1 (ofloxacin) in surface water and from less than LOQ to 344.8 μg·kg-1 (sulphamethoxazole) in sediments. The number of detected antibiotics and the overall antibiotic concentrations were higher in the urban area than the rural area, indicating the probable role of livestock and human activities as important sources of antibiotic contamination. In fish muscles, the concentration of norfloxacin was the highest (up to 38.5 μg·kg-1), but tetracyclines and macrolides were relatively low. Results showed that the methods were rapid and sensitive, and capable of determining several classes of antibiotics from each of the water, sediment, and fish matrices in a single run.

Keywords antibiotics      liquid chromatography–tandem mass spectrometry (LC-MS/MS)      water      sediment      fish muscle     
Corresponding Author(s): XU Jian   
Issue Date: 19 May 2014
 Cite this article:   
WEI Yimei,ZHANG Yuan,XU Jian, et al. Simultaneous quantification of several classes of antibiotics in water, sediments, and fish muscles by liquid chromatography–tandem mass spectrometry[J]. Front.Environ.Sci.Eng., 2014, 8(3): 357-371.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0580-6
https://academic.hep.com.cn/fese/EN/Y2014/V8/I3/357
analyte (class)compoundCAS numbermolecular weightstructure
sulphonamidessulphamethizole144-82-1270.34
sulphacetamide144-80-9214.24
sulphathiazole72-14-0255.32
sulphachloropyridazine80-32-0284.73
sulphamethoxazole723-46-6253.28
sulphisoxazole127-69-5267.31
sulphadimethoxine122-11-2310.33
fluoroquinolonesnorfloxacin70458-96-7319.33
ofloxacin82419-36-1361.37
ciprofloxacin85721-33-1331.34
enrofloxacin93106-60-6359.39
tetracyclinesoxytetracycline79-57-2460.44
tetracycline60-54-8444.44
chlortracycline57-62-5478.89
macrolidesroxithromycin80214-83-1837.05
erythromycin114-07-8733.93
bacteriostatic antibiotictrimethoprim738-70-5290.32
surrogate13C3-caffeine78072-66-9197.18
Tab.1  
Fig.1  Sampling locations in Dianchi Lake, China
compoundretention time /minfragmentor voltageMRMtransitions /(m/z)collision energy /eV
sulphacetamide9.909090215→156a)215→108b)518
13C3-caffeinec)10.32120198→120a)15
sulphathiazole10.79110110256→156a)256→108b)1020
trimethoprim12.08110110291→230a)291→261b)2525
norfloxacin13.319090320→302a)320→276b)1818
ofloxacin13.65110110362→318a)362→261b)1525
oxytetracycline13.97120120461→426a)461→444b)1510
ciprofloxacin14.95110110332→314a)332→231b)2035
tetracycline16.67120120445→410a)445→427b)1510
enrofloxacin16.85130130360→316a)360→342b)1515
sulphamethizole17.19100100271→156a)271→92b)1225
chlortetracycline18.60130130479→444a)479→462b)1813
sulphachloropyridazine19.53100100285→156a)285→92b)1025
erythromycin19.999090734.5→158a)734.5→576b)3515
sulphamethoxazole20.31100100254→156a)254→92b)1025
sulphisoxazole20.79100100268→156a)268→92b)825
roxithromycin21.61130130837.5→679a)837.5→158b)1535
sulphadimethoxine21.76100100311→156a)311→92b)1835
Tab.2  
Fig.2  Total ion chromatogram (TIC) of the antibiotic extract of a spiked sediment (100 μg·kg-1 each) from Miyun Reservoir (1: SCT, 2: 13C3-caffeine, 3: STZ, 4: TMP, 5: NOR, 6: OFL, 7: OTC, 8: CIP, 9: TC, 10: ENR, 11: SMZ, 12: CTC, 13: SCP, 14: ERM, 15: SMX, 16: SIA, 17: ROM, 18: SDX)
Fig.3  Extracted ion chromatograms (XIC) of the multiple reaction monitoring (MRM) chromatograms of the antibiotics (100 μg·kg-1 each in sediment)
compoundspike concentrationLODa)LOQb)linearity (r2)c)
/(10 ng·L-1)/(100 ng·L-1)/(ng·L-1)/(ng·L-1)
sulphacetamide88±0.863±4.10.360.920.9984
sulphathiazole67±2.089±2.71.043.340.9959
trimethoprim82±4.289±3.93.0510.100.9955
norfloxacin83±2.991±3.50.561.180.9988
ofloxacin72±3.194±4.33.1110.200.9982
oxytetracycline89±3.786±4.84.1712.660.9959
ciprofloxacin72±4.893±2.33.1010.640.9980
tetracycline82±3.184±4.32.529.520.9987
enrofloxacin82±2.395±4.72.608.700.9969
sulphamethizole65±8.760±9.30.812.700.9955
chlortetracycline68±9.271±8.34.1512.630.9991
sulphachloropyridazine81±3.571±2.91.025.120.9973
erythromycin77±1.979±3.14.2812.440.9923
sulphamethoxazole61±7.766±8.21.204.100.9976
sulphisoxazole67±6.368±5.80.862.930.9928
roxithromycin83±2.485±2.23.5211.140.9932
sulphadimethoxine75±1.978±2.40.622.080.9970
Tab.3  
Fig.4  (a) Extraction recoveries of the antibiotics in sediment using methanol and citric buffer with different pH values; (b) Extraction recoveries of the antibiotics in sediment using different extraction solvents. A: methanol; B: citric buffer; C: methanol+ citric buffer (50:50 v/v); D: methanol+ citric buffer (20:80 v/v); E: methanol+ citric buffer (80:20 v/v)
compoundsedimentfish
amount/(μg·kg-1)recovery/%LOD/(μg·kg-1)LOQ/(μg·kg-1)amount/(μg·kg-1)recovery/%LOD/(μg·kg-1)LOQ/(μg·kg-1)
sulphacetamide5010020097.6±13.790.9±16.6105.3±7.31.44.65010020089.5±7.886.7±13.791.1±5.61.24.0
sulphathiazole5010020079.8±17.272.6±6.973.2±12.63.411.25010020080.2±6.990.9±7.490.7±3.64.314.6
trimethoprim5010020083.8±8.482.9±10.687.0±10.40.21.15010020077.5±7.488.9±7.990.4±11.50.82.4
norfloxacin5010020069.1±10.865.8±4.768.0±6.63.811.95010020067.9±13.682.9±6.379.3±8.24.112.5
ofloxacin5010020069.4±5.870.5±5.473.7±6.90.61.95010020082.9±7.091.8±4.588.9±6.61.85.1
oxytetracycline5010020086.3±7.183.0±4.887.5±11.20.93.05010020083.3±4.086.3±11.890.3±10.21.14.2
ciprofloxacin5010020073.3±14.375.8±13.177.1±9.50.93.05010020075.4±16.387±12.486.2±12.90.82.7
tetracycline5010020055.9±8.348.1±10.667.1±9.81.96.25010020059.8±15.586.5±8.180.2±11.23.310.2
enrofloxacin5010020065.5±1.177.6±6.369.4±1.74.912.65010020064.2±17.874.8±15.777.3±12.53.411.1
sulphamethizole5010020065.8±5.177.2±8.376.7±9.10.31.15010020075.4±4.183.8±7.4101.5±6.90.20.9
chlortetracycline5010020079.3±16.883.2±19.485.5±19.90.41.35010020081.2±7.583.8±12.994.6±14.31.03.2
sulphachloropyridazine5010020075.8±4.980.0±7.579.7±6.00.20.65010020065.3±5.571.44±5.177.3±9.20.32.1
erythromycin5010020070.3±7.174.7±11.775.8±11.50.31.15010020088.6±3.8103.4±2.491.2±2.60.51.5
sulphamethoxazole50100200104.2±5.288.1±11.997.6±8.60.10.45010020068.5±12.072.2±16.871.8±11.70.82.4
sulphisoxazole5010020069.9±11.376.4±5.874.5±120.10.25010020065.4±12.888.6±11.293.4±14.50.61.9
roxithromycin5010020070.1±2.273.5±4.181.8±6.10.10.55010020079.1±16.385.6±10.982.4±15.20.31.7
sulphadimethoxine5010020079.1±4.184.2±1.791.7±3.30.10.45010020070.5±16.283.8±9.490.2±6.20.21.2
Tab.4  
Fig.5  Recoveries of antibiotics from fish tissues under different conditions: (a) pH effects and (b) extractant volumes
Fig.6  Spatial distribution of antibiotics detected in different sites in (a) surface water and (b) sediment from Dianchi Lake
samplesulfonamidesfluoroquinolonestetracyclinesmacrolides
SMXSDXSTZNOROFLCIPTCOTCROMERM
10.90.42.8
2a)3.92.80.4
31.26.11.9
438.5
53.7
62.5
73.45.3
811.22.4
92.70.7
101.5
114.2
122.33.24.5
135.71.7
Tab.5  
1 Ingerslev F, Halling-Sørensen B. Biodegradability properties of sulfonamides in activated sludge. Environmental Toxicology and Chemistry, 2000, 19(10): 2467–2473
doi: 10.1002/etc.5620191011
2 Holm J V, Ruegge K, Bjerg P L, Christensen T H. Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (grindsted, denmark). Environmental Science & Technology, 1995, 29(5): 1415–1420
doi: 10.1021/es00005a039 pmid: 22192041
3 Luo Y, Xu L, Rysz M, Wang Y, Zhang H, Alvarez P J J. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environmental Science & Technology, 2011, 45(5): 1827–1833
doi: 10.1021/es104009s pmid: 21309601
4 Tong L, Li P, Wang Y, Zhu K. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS. Chemosphere, 2009, 74(8): 1090–1097
doi: 10.1016/j.chemosphere.2008.10.051 pmid: 19081124
5 Halling-Sørensen B, Nors Nielsen S, Lanzky P F, Ingerslev F, Holten Lützhøft H C, Jørgensen S E. Occurrence, fate and effects of pharmaceutical substances in the environment: a review. Chemosphere, 1998, 36(2): 357–393
doi: 10.1016/S0045-6535(97)00354-8 pmid: 9569937
6 Boxall A B A, Blackwell P, Cavallo R, Kay P, Tolls J. The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicology Letters, 2002, 131(1–2): 19–28
doi: 10.1016/S0378-4274(02)00063-2 pmid: 11988355
7 Dasenaki M E, Thomaidis N S. Multi-residue determination of seventeen sulfonamides and five tetracyclines in fish tissue using a multi-stage LC-ESI-MS/MS approach based on advanced mass spectrometric techniques. Analytica Chimica Acta, 2010, 672(1–2): 93–102
doi: 10.1016/j.aca.2010.04.034 pmid: 20579496
8 Soliman M A, Pedersen J A, Suffet I H. Rapid gas chromatography-mass spectrometry screening method for human pharmaceuticals, hormones, antioxidants and plasticizers in water. Journal of Chromatography. A, 2004, 1029(1–2): 223–237
doi: 10.1016/j.chroma.2003.11.098 pmid: 15043002
9 Lindsey M E, Meyer T M, Thurman E M. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Analytical Chemistry, 2001, 73(19): 4640–4646
doi: 10.1021/ac010514w pmid: 11605842
10 Wen X, Tu C, Lee H K. Two-step liquid-liquid-liquid microextraction of nonsteroidal antiinflammatory drugs in wastewater. Analytical Chemistry, 2004, 76(1): 228–232
doi: 10.1021/ac0302354 pmid: 14697055
11 Bogialli S, Curini R, Di Corcia A, Nazzari M, Samperi R. A liquid chromatography-mass spectrometry assay for analyzing sulfonamide antibacterials in cattle and fish muscle tissues. Analytical Chemistry, 2003, 75(8): 1798–1804
doi: 10.1021/ac0262816 pmid: 12713036
12 Tolls J. Sorption of veterinary pharmaceuticals in soils: a review. Environmental Science & Technology, 2001, 35(17): 3397–3406
doi: 10.1021/es0003021 pmid: 11563639
13 Liu R, Zhou J L, Wilding A. Microwave-assisted extraction followed by gas chromatography-mass spectrometry for the determination of endocrine disrupting chemicals in river sediments. Journal of Chromatography. A, 2004, 1038(1–2): 19–26
doi: 10.1016/j.chroma.2004.03.030 pmid: 15233517
14 Li W, Shi Y, Gao L, Liu J, Cai Y. Investigation of antibiotics in mollusks from coastal waters in the Bohai Sea of China. Environmental Pollution, 2012, 162: 56–62
doi: 10.1016/j.envpol.2011.10.022 pmid: 22243847
15 Yamini Y, Asghari-Khiavi M, Bahramifar N. Effects of different parameters on supercritical fluid extraction of steroid drugs, from spiked matrices and tablets. Talanta, 2002, 58(5): 1003–1010
doi: 10.1016/S0039-9140(02)00455-1 pmid: 18968834
16 de Liguoro M, Cibin V, Capolongo F, Halling-Sørensen B, Montesissa C. Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil. Chemosphere, 2003, 52(1): 203–212
doi: 10.1016/S0045-6535(03)00284-4 pmid: 12729703
17 Xu J, Wu L, Chen W, Chang A C. Simultaneous determination of pharmaceuticals, endocrine disrupting compounds and hormone in soils by gas chromatography-mass spectrometry. Journal of Chromatography. A, 2008, 1202(2): 189–195
doi: 10.1016/j.chroma.2008.07.001 pmid: 18639882
18 Jacobsen A M, Halling-Sørensen B, Ingerslev F, Hansen S H. Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Journal of Chromatography. A, 2004, 1038(1–2): 157–170
doi: 10.1016/j.chroma.2004.03.034 pmid: 15233531
19 Yang J F, Ying G G, Zhao J L, Tao R, Su H C, Chen F. Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS. Science of the Total Environment, 2010, 408(16): 3424–3432
doi: 10.1016/j.scitotenv.2010.03.049 pmid: 20451241
20 Juan-García A, Font G, Picó Y. Determination of quinolone residues in chicken and fish by capillary electrophoresis-mass spectrometry. Electrophoresis, 2006, 27(11): 2240–2249
doi: 10.1002/elps.200500868 pmid: 16736458
21 Romero-González R, López-Martínez J C, Gómez-Milán E, Garrido-Frenich A, Martínez-Vidal J L. Simultaneous determination of selected veterinary antibiotics in gilthead seabream (Sparus Aurata) by liquid chromatography-mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 2007, 857(1): 142–148
doi: 10.1016/j.jchromb.2007.07.011 pmid: 17644050
22 Mistri H N, Jangid A G, Pudage A, Shah A, Shrivastav P S. Simultaneous determination of sulfamethoxazole and trimethoprim in microgram quantities from low plasma volume by liquid chromatography–tandem mass spectrometry. Microchemical Journal, 2010, 94(2): 130–138
doi: 10.1016/j.microc.2009.10.002
23 Loke M L, Tjørnelund J, Halling-Sørensen B. Determination of the distribution coefficient (log Kd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. Chemosphere, 2002, 48(3): 351–361
doi: 10.1016/S0045-6535(02)00078-4 pmid: 12146624
24 Wang B, Huang B, Jin W, Zhao S, Li F, Hu P, Pan X. Occurrence, distribution, and sources of six phenolic endocrine disrupting chemicals in the 22 river estuaries around Dianchi Lake in China. Environmental Science and Pollution Research International, 2013, 20(5): 3185–3194
doi: 10.1007/s11356-012-1236-y pmid: 23054796
25 Xu W, Zhang G, Zou S, Ling Z, Wang G, Yan W. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China. Water Environment Research, 2009, 81(3): 248–254
doi: 10.2175/106143008X325719 pmid: 19378655
26 Zou S, Xu W, Zhang R, Tang J, Chen Y, Zhang G. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: impacts of river discharge and aquaculture activities. Environmental Pollution, 2011, 159(10): 2913–2920
doi: 10.1016/j.envpol.2011.04.037 pmid: 21576000
27 Gulkowska A, He Y, So M K, Yeung L W Y, Leung H W, Giesy J P, Lam P K S, Martin M, Richardson B J. The occurrence of selected antibiotics in Hong Kong coastal waters. Marine Pollution Bulletin, 2007, 54(8): 1287–1293
doi: 10.1016/j.marpolbul.2007.04.008 pmid: 17553528
28 Tamtam F, Mercier F, Le Bot B, Eurin J, Tuc Dinh Q, Clément M, Chevreuil M. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. Science of the Total Environment, 2008, 393(1): 84–95
doi: 10.1016/j.scitotenv.2007.12.009 pmid: 18222530
29 Wiegel S, Aulinger A, Brockmeyer R, Harms H, Löffler J, Reincke H, Schmidt R, Stachel B, von Tümpling W, Wanke A. Pharmaceuticals in the river Elbe and its tributaries. Chemosphere, 2004, 57(2): 107–126
doi: 10.1016/j.chemosphere.2004.05.017 pmid: 15294435
30 Figueroa R A, MacKay A A. Sorption of oxytetracycline to iron oxides and iron oxide-rich soils. Environmental Science & Technology, 2005, 39(17): 6664–6671
doi: 10.1021/es048044l pmid: 16190225
31 MacKay A A, Canterbury B. Oxytetracycline sorption to organic matter by metal-bridging. Journal of Environmental Quality, 2005, 34(6): 1964–1971
doi: 10.2134/jeq2005.0014 pmid: 16221815
32 Zhou L J, Ying G G, Zhao J L, Yang J F, Wang L, Yang B, Liu S. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environmental Pollution, 2011, 159(7): 1877–1885
doi: 10.1016/j.envpol.2011.03.034 pmid: 21501908
33 Zhang D, Lin L, Luo Z, Yan C, Zhang X. Occurrence of selected antibiotics in Jiulongjiang River in various seasons, South China. Journal of Environmental Monitoring, 2011, 13(7): 1953–1960
doi: 10.1039/c0em00765j pmid: 21594300
34 Meija J, Bisenieks J. Solution to half-titration challenge. Analytical and Bioanalytical Chemistry, 2007, 389(5): 1301–1302
doi: 10.1007/s00216-007-1566-7 pmid: 17882406
[1] Tao Liu, Yudong Song, Zhiqiang Shen, Yuexi Zhou. Inhibition character of crotonaldehyde manufacture wastewater on biological acidification[J]. Front. Environ. Sci. Eng., 2021, 15(6): 119-.
[2] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[3] Ziyue Yin, Qing Lin, Shaohui Xu. Using hydrochemical signatures to characterize the long-period evolution of groundwater information in the Dagu River Basin, China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 105-.
[4] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[5] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[6] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[7] Byungjin Lee, Eun Seo Jo, Dong-Wha Park, Jinsub Choi. Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing non-degradable organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(5): 90-.
[8] Mengzhi Ji, Zichen Liu, Kaili Sun, Zhongfang Li, Xiangyu Fan, Qiang Li. Bacteriophages in water pollution control: Advantages and limitations[J]. Front. Environ. Sci. Eng., 2021, 15(5): 84-.
[9] Haoran Feng, Min Liu, Wei Zeng, Ying Chen. Optimization of the O3/H2O2 process with response surface methodology for pretreatment of mother liquor of gas field wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 78-.
[10] Danyang Liu, Johny Cabrera, Lijuan Zhong, Wenjing Wang, Dingyuan Duan, Xiaomao Wang, Shuming Liu, Yuefeng F. Xie. Using loose nanofiltration membrane for lake water treatment: A pilot study[J]. Front. Environ. Sci. Eng., 2021, 15(4): 69-.
[11] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[12] Shanshan Zhao, Zhu Tao, Liwei Chen, Muqiao Han, Bin Zhao, Xuelin Tian, Liang Wang, Fangang Meng. An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation[J]. Front. Environ. Sci. Eng., 2021, 15(4): 63-.
[13] Zhiling Wu, Xianchun Tang, Hongbin Chen. Seasonal and treatment-process variations in invertebrates in drinking water treatment plants[J]. Front. Environ. Sci. Eng., 2021, 15(4): 62-.
[14] Safaa M. Ezzat, Mohammed T. Mohammed T.. Treating wastewater under zero waste principle using wetland mesocosms[J]. Front. Environ. Sci. Eng., 2021, 15(4): 59-.
[15] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed