Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (6) : 913-919    https://doi.org/10.1007/s11783-013-0583-3
RESEARCH ARTICLE
Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode
Peng LIANG, Jincheng WEI, Ming LI, Xia HUANG()
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(582 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A scaled up microbial fuel cell (MFC) of a 50 L volume was set up with an oxic-anoxic two-stage biocathode and activated semicoke packed electrodes to achieve simultaneous power generation and nitrogen and organic matter removals. An average maximum power density of 43.1 W·m-3 was obtained in batch operating mode. By adjusting the two external resistances, the denitrification in the A-MFC and power production in the O-MFC could be enhanced. In continuous mode, when the hydraulic retention times were set at 6 h, 8 h and 12 h, the removal efficiencies of COD, NH4+-N and total nitrogen (TN) were higher than 95%, 97%, and 84%, respectively. Meanwhile the removal loads for COD, NH4+-N and TN were10, 0.37 and 0.4 kg·(m3·d)-1, respectively.

Keywords microbial fuel cell (MFC)      oxic-anoxic two stage biocathode      denitrifying     
Corresponding Author(s): HUANG Xia,Email:xhuang@tsinghua.edu.cn   
Issue Date: 01 December 2013
 Cite this article:   
Peng LIANG,Jincheng WEI,Ming LI, et al. Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode[J]. Front Envir Sci Eng, 2013, 7(6): 913-919.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0583-3
https://academic.hep.com.cn/fese/EN/Y2013/V7/I6/913
Fig.1  Schematics (A) and prototype (B) of the denitrifying MFC (O-MFC: the upper half of the MFC, consisting of anode II (A2) and oxic cathode (Co); A-MFC: the lower part of the MFC, consisting of anode I (A1) and anoxic cathode (Ca) ; AEM: anion exchange membrane; CEM: cation exchange membrane)
Fig.2  Polarization curves and power densities of O-MFC and A-MFC at intermittent operation (vacant spot: voltage; solid spot: power density)
HRT/hinternal resistance/Ωmaximum power density/(W·m-3)*
O-MFCA-MFCO-MFCA-MFCAverage
60.640.7849.227.238.2
120.690.8142.023.532.8
180.770.9036.620.228.4
Tab.1  Internal resistances and power densities of O-MFC and A-MFC in continuous flow mode
Fig.3  Polarization curves and power densities of O-MFC (A) and A-MFC (B) at continuous operation (vacant spot: voltage; solid spot: power density)
HRT/hexternal resistance/Ωpower density/(W·m-3)CECOD/%CENO3-N /%
O-MFCA-MFCO-MFCA-MFCaverageO-MFCA-MFC
60.60.1247.910.229.134.337.296.8
120.70.1239.58.424.030.733.5105
180.90.1233.26.319.827.629.1109
Tab.2  External resistances, power densities and coulombic efficiencies of O-MFC and A-MFC in continuous flow mode when external resistance adjusted
Fig.4  COD (A), ammonia nitrogen (B) and total nitrogen (C) removals at different HRTs in continuous flow mode
removal loads/(kg·(m3·d) -1)HRT= 6 hHRT= 12 hHRT= 18 h
A1A2CoCaA1A2CoCaA1A2CoCa
COD3.632.751.060.452.191.780.800.031.721.250.370.03
(46%)*(35%)(13%)(6%)(46%)(37%)(17%)(1%)(51%)(37%)(11%)(1%)
ammonia nitrogen0.020.030.310.010.020.020.230.010.020.020.150.01
(5%)(8%)(84%)(3%)(7%)(7%)(82%)(4%)(10%)(10%)(75%)(5%)
TN0.020.030.010.340.020.020.010.330.020.020.010.28
(5%)(8%)(3%)(85%)(5%)(5%)(3%)(87%)(6%)(6%)(3%)(85%)
Tab.3  COD, ammonia and TN removal loads at continuous operation
Fig.5  Nitrogen concentrations in the effluent of four chambers at different HRTs in continuous flow mode
1 Rabaey K, Rozendal R A. Microbial electrosynthesis-revisiting the electrical route for microbial production. Nature Reviews. Microbiology , 2010, 8(10): 706-716
doi: 10.1038/nrmicro2422 pmid:20844557
2 Logan B E, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science , 2012, 337(6095): 686-690
doi: 10.1126/science.1217412 pmid:22879507
3 Fan Y Z, Han S K, Liu H. Improved performance of CEA microbial fuel cells with increased reactor size. Energy & Environmental Science , 2012, 5(8): 8273-8280
doi: 10.1039/c2ee21964f
4 Cao X X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan B E. A new method for water desalination using microbial desalination cells. Environmental Science & Technology , 2009, 43(18): 7148-7152
doi: 10.1021/es901950j pmid:19806756
5 Yuan L L, Yang X F, Liang P, Wang L, Huang Z H, Wei J, Huang X. Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water. Bioresource Technology , 2012, 110: 735-738
doi: 10.1016/j.biortech.2012.01.137 pmid:22364771
6 Mu Y, Rabaey K, Rozendal R A, Yuan Z, Keller J. Decolorization of azo dyes in bioelectrochemical systems. Environmental Science & Technology , 2009, 43(13): 5137-5143
doi: 10.1021/es900057f pmid:19673319
7 Li J, Liu G L, Zhang R D, Luo Y, Zhang C, Li M. Electricity generation by two types of microbial fuel cells using nitrobenzene as the anodic or cathodic reactants. Bioresource Technology , 2010, 101(11): 4013-4020
doi: 10.1016/j.biortech.2009.12.135 pmid:20137921
8 Zhao H Z, Zhang Y, Zhao B, Chang Y, Li Z. Electrochemical reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode. Environmental Science & Technology , 2012, 46(9): 5198-5204
doi: 10.1021/es300186f pmid:22475021
9 Zhao H Z, Zhang Y, Chang Y Y, Li Z S. Conversion of a substrate carbon source to formic acid for carbon dioxide emission reduction utilizing series-stacked microbial fuel cells. Journal of Power Resources , 2012, 217: 59-64
doi: 10.1016/j.jpowsour.2012.06.014
10 Wang A J, Cheng H Y, Ren N Q, Cui D, Lin N, Wu W M. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery. Frontiers of Environmental Science and Engineering , 2012, 6(4): 569-574
11 Clauwaert P, Rabaey K, Aelterman P, de Schamphelaire L, Pham T H, Boeckx P, Boon N, Verstraete W. Biological denitrification in microbial fuel cells. Environmental Science & Technology , 2007, 41(9): 3354-3360
doi: 10.1021/es062580r pmid:17539549
12 Virdis B, Rabaey K, Yuan Z, Keller J. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Research , 2008, 42(12): 3013-3024
doi: 10.1016/j.watres.2008.03.017 pmid:18466949
13 Virdis B, Rabaey K, Rozendal R A, Yuan Z, Keller J. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Research , 2010, 44(9): 2970-2980
doi: 10.1016/j.watres.2010.02.022 pmid:20303136
14 Xie S, Liang P, Chen Y, Xia X, Huang X. Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system. Bioresource Technology , 2011, 102(1): 348-354
doi: 10.1016/j.biortech.2010.07.046 pmid:20685109
15 Zhang F, He Z. Simultaneous nitrification and denitrification with electricity generation in dual-cathode microbial fuel cells. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 2012, 87(1): 153-159
doi: 10.1002/jctb.2700
16 Zhang F, He Z. Integrated organic and nitrogen removal with electricity generation in a tubular dual-cathode microbial fuel cell. Process Biochemistry , 2012, 47(12): 2146-2151
doi: 10.1016/j.procbio.2012.08.002
17 Wei J C, Liang P, Huang X. Recent progress in electrodes for microbial fuel cells. Bioresource Technology , 2011, 102(20): 9335-9344
doi: 10.1016/j.biortech.2011.07.019 pmid:21855328
18 Wei J C, Liang P, Cao X X, Huang X. Use of inexpensive semicoke and activated carbon as biocathode in microbial fuel cells. Bioresource Technology , 2011, 102(22): 10431-10435
doi: 10.1016/j.biortech.2011.08.088 pmid:21924899
19 Wei J C, Liang P, Zuo K C, Cao X, Huang X. Carbonization and activation of inexpensive semicoke-packed electrodes to enhance power generation of microbial fuel cells. ChemSusChem , 2012, 5(6): 1065-1070
doi: 10.1002/cssc.201100718 pmid:22639403
20 Logan B E, Hamelers B, Rozendal R A, Schr?der U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environmental Science & Technology , 2006, 40(17): 5181-5192
doi: 10.1021/es0605016 pmid:16999087
21 Larrosa G A, Scott K, Head I M, Mateo F, Ginesta A, Godinez C. Effect of temperature on the performance of microbial fuel cells. Fuel , 2010, 89(12): 3985-3994
doi: 10.1016/j.fuel.2010.06.025
[1] Yuxin Li, Jiayin Ling, Pengcheng Chen, Jinliang Chen, Ruizhi Dai, Jinsong Liao, Jiejing Yu, Yanbin Xu. Pseudomonas mendocina LYX: A novel aerobic bacterium with advantage of removing nitrate high effectively by assimilation and dissimilation simultaneously[J]. Front. Environ. Sci. Eng., 2021, 15(4): 57-.
[2] Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type[J]. Front. Environ. Sci. Eng., 2018, 12(5): 8-.
[3] Dongliang Du, Chuanyi Zhang, Kuixia Zhao, Guangrong Sun, Siqi Zou, Limei Yuan, Shilong He. Effect of different carbon sources on performance of an A2N-MBR process and its microbial community structure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 4-.
[4] Xiuhong Liu, Hongchen Wang, Qing Yang, Jianmin Li, Yuankai Zhang, Yongzhen Peng. Online control of biofilm and reducing carbon dosage in denitrifying biofilter: pilot and full-scale application[J]. Front. Environ. Sci. Eng., 2017, 11(1): 4-.
[5] Zheng LI,Rong QI,Wei AN,Takashi MINO,Tadashi SHOJI,Willy VERSTRAETE,Jian GU,Shengtao LI,Shiwei XU,Min YANG. Simulation of long-term nutrient removal in a full-scale closed-loop bioreactor for sewage treatment: an example of Bayesian inference[J]. Front. Environ. Sci. Eng., 2015, 9(3): 534-544.
[6] Sanath KONDAVEETI,Kwang Soon CHOI,Ramesh KAKARLA,Booki MIN. Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs)[J]. Front.Environ.Sci.Eng., 2014, 8(5): 784-791.
[7] Gang GUO, Yayi WANG, Chong WANG, Hong WANG, Mianli PAN, Shaowei CHEN. Short-term effects of excessive anaerobic reaction time on anaerobic metabolism of denitrifying polyphosphate- accumulating organisms linked to phosphorus removal and N2O production[J]. Front Envir Sci Eng, 2013, 7(4): 616-624.
[8] Bin MA, Shuying WANG, Guibing ZHU, Shijian GE, Junmin WANG, Nanqi Ren, Yongzhen PENG. Denitrification and phosphorus uptake by DPAOs using nitrite as an electron acceptor by step-feed strategies[J]. Front Envir Sci Eng, 2013, 7(2): 267-272.
[9] Shijian GE, Yongzhen PENG, Congcong LU, Shuying WANG. Practical consideration for design and optimization of the step feed process[J]. Front Envir Sci Eng, 2013, 7(1): 135-142.
[10] Aijie WANG, Haoyi CHENG, Nanqi REN, Dan CUI, Na LIN, Weimin WU. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery[J]. Front Envir Sci Eng, 2012, 6(4): 569-574.
[11] Jianhua WANG, Yongzhen PENG, Yongzhi CHEN. Advanced nitrogen and phosphorus removal in A2O-BAF system treating low carbon-to-nitrogen ratio domestic wastewater[J]. Front Envir Sci Eng Chin, 2011, 5(3): 474-480.
[12] Hongxun HOU, Shuying WANG, Yongzhen PENG, Zhiguo YUAN, Fangfang YIN, Wang GAN. Anoxic phosphorus removal in a pilot scale anaerobic-anoxic oxidation ditch process[J]. Front Envir Sci Eng Chin, 2009, 3(1): 106-111.
[13] WANG Yayi, WANG Shuying, PENG Yongzhen, Zhu Guibing, LING Yunfang. Influence of carbon source and temperature on the denitrifying phosphorus removal process[J]. Front.Environ.Sci.Eng., 2007, 1(2): 226-232.
[14] YUAN Linjiang, HAN Wei, WANG Lei, YANG Yongzhe, WANG Zhiying. Simultaneous denitrifying phosphorus accumulation in a sequencing batch reactor[J]. Front.Environ.Sci.Eng., 2007, 1(1): 23-27.
[15] LI Jie, XIONG Biyong, ZHANG Shude, YANG Hong, ZHANG Jie. Effects of nitrite on phosphate uptake in anaerobic-oxic process[J]. Front.Environ.Sci.Eng., 2007, 1(1): 39-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed