Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (4) : 616-623    https://doi.org/10.1007/s11783-013-0589-x
RESEARCH ARTICLE
Fully integrated approach: an alternative solution of coupling a GIS and diffuse pollution models
S. LIU1,*(),R.E. BRAZIER2,A. L. HEATHWAITE3,W. LIU1
1. School of Environment, Tsinghua University, Beijing 100084, China
2. Department of Geography, University of Exeter, EX4 4RJ, Exeter, UK
3. Centre for Sustainable Water Management, The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
 Download: PDF(140 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As a tool for management, query, visualization and analysis of spatially referred information, GIS has been recognized as a method to aid the modeling of diffuse pollution and visualize the results in a spatial context. A common question in integrating diffuse pollution models and GIS is to choose a suitable coupling approach, in which the feature of diffuse pollution models should be taken into account. In this paper, we report on our experience in coupling a distributed diffuse pollution model with a GIS. A prototype of fully integrated system is developed in this paper. This system has high flexibility, extendibility and great data management efficiency. Differences in applicability of loose coupling, tight coupling and fully integrated approaches are addressed. It is concluded that the fully integrated approach can avoid tanglesome data exchange and routine execution and more robust than loose and tight coupling approaches and is suitable for distributed diffuse pollution modes.

Keywords diffuse pollution      GIS      modeling      nutrients      phosphorus     
Corresponding Author(s): S. LIU   
Issue Date: 11 June 2014
 Cite this article:   
S. LIU,R.E. BRAZIER,A. L. HEATHWAITE, et al. Fully integrated approach: an alternative solution of coupling a GIS and diffuse pollution models[J]. Front.Environ.Sci.Eng., 2014, 8(4): 616-623.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0589-x
https://academic.hep.com.cn/fese/EN/Y2014/V8/I4/616
Fig.1  The schematic illustration of loosing coupling approach
Fig.2  The schematic illustration of tight coupling approach
Fig.3  Schematic illustration of fully integrated approach

Note: <InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13084-ls.doc_images\fse-13084-lsm-tu1.jpg" ScaleToFitWidth="10cm" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-13084-LS.doc_images\FSE-13084-LSM-tu1.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject> indicates GIS environment.

Fig.4  The model structure for the phosphorus indicators tool

Note: HER means Hydrologically Effective Rainfall; HOST means Hydrology of soil type

Fig.5  Schematic illustration of the structure of the prototype system

Note: <InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13084-ls.doc_images\fse-13084-lsm-tu1.jpg" ScaleToFitWidth="10cm" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-13084-LS.doc_images\FSE-13084-LSM-tu1.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject>indicates GIS environment.

loose coupling approachtight coupling approachfully integrated approach
role of GISdata conversion, result visualizationdata manipulation, model calculation (part of), result visualizationdata manipulation, model calculation (whole), result visualization
data exchange between GIS and diffuse pollution modelyes, manualyes, automaticno
suitable for lumped or distributed modelboth ok, lumped preferableboth okboth ok
suitable for model with simple or complex algorithmboth ok, simple model preferableboth oksimple
programming requirementlowhighmedium
Who is the developer?environmental modeler with a little programming experienceenvironmental modeler with intensive programming experienceenvironmental modeler with medium programming experience
reusabilitylowhighmedium
advantageredundant programming can be avoidedeffective integrationseamless integration
disadvantagesubject to operator error, difficult to maintenance, low reusabilitycomplicated communication between the GIS and the diffuse pollution model might cause problemnot suitable for diffuse model with complex algorithms (e.g. partial differential equation)
Tab.1  Comparison of three coupling approaches
1 BurroughP A, McDonnellR A. Principles of Geographical Information Systems. Oxford: Oxford University Press, 1998
2 LiuS, TuckerP, MansellM, HursthouseA. Development and application of a catchment scale diffuse nitrate modelling tool.Hydrological Processes, 2005, 19: 2625-2639
doi: 10.1002/hyp.5678
3 LiuS, TuckerP, MansellM, HursthourseA. Application of a water quality model in the white cart water catchment, Glasgow, UK.Environmental Geochemistry and Health, 2003, 25(1): 57-62
doi: 10.1023/A:1021244814337
4 JordanC, SmithR V. Methods to predict the agricultural contribution to catchment nitrate loads: designation of nitrate vulnerable zones in Northern Ireland. Journal of Hydrology (Amsterdam), 2005, 304(1-4): 316-329
doi: 10.1016/j.jhydrol.2004.07.037
5 HuangB, JiangB. AVTOP: a full integration of TOPMODEL into GIS. Environmental Modelling & Software, 2002, 17(3): 261-268
doi: 10.1016/S1364-8152(01)00073-1
6 LeónL F, SoulisE D, KouwenN, FarquharG J. Modeling diffuse pollution with a distributed approach. Water Sci Technol, 2002, 45(9): 149-156
pmid: 12079097
7 BrazierR E, HeathwaiteA L, LiuS. Scaling issues relating to phosphorus transfer from land to water in agricultural catchments. Journal of Hydrology (Amsterdam), 2005, 304(1-4): 330-342
doi: 10.1016/j.jhydrol.2004.07.047
8 PieterseN M, BleutenW, JørgensenS E. Contribution of point sources and diffuse sources to nitrogen and phosphorus loads in lowland river tributaries. Journal of Hydrology (Amsterdam), 2003, 271(1-4): 213-225
doi: 10.1016/S0022-1694(02)00350-5
9 SmithR V, JordanC, AnnettJ A. A phosphorus budget for Northern Ireland: inputs to inland and coastal waters. Journal of Hydrology (Amsterdam), 2005, 304(1-4): 193-202
doi: 10.1016/j.jhydrol.2004.10.004
10 JohnesP J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach. Journal of Hydrology (Amsterdam), 1996, 183(3-4): 323-349
doi: 10.1016/0022-1694(95)02951-6
11 NyergesT. GIS for Environmental Modellers: An Overview. In:Proceedings of First International Conference/Workshop on Integrating GIS and Environmental Modeling. Boulder:NCGIA, 1991
12 KarimiH A, BlaisJ A R. Current and future directions in GISs. Computers, Environment and Urban Systems, 1997, 20(2): 85-97.
13 BrandmeyerB E, KarimiH A. Coupling methodologies for environmental models. Environmental Modelling & Software, 2000, 15(5): 479-488
doi: 10.1016/S1364-8152(00)00027-X
14 HeathwaiteA L, FraserA I, JohnesP J, HutchinsM, LordE, ButterfieldD. The Phosphorus Indicators Tool: a simple model of diffuse P loss from agricultural land to water. Soil Use and Management, 2003, 19(1): 1-11
doi: 10.1111/j.1475-2743.2003.tb00273.x
15 LiuS, BrazierR E, HeathwaiteL. An investigation into the inputs controlling predictions from a diffuse phosphorus loss model for the UK; the Phosphorus Indicators Tool (PIT). Science of Total Environment, 2005, 344(1-3): 211-223
doi: 10.1016/j.scitotenv.2005.02.017 pmid: 15907519
16 LiuS, TuckerP, MansellM. A conceptual nitrate transport model and Its application at different scales, Environmental Modeling & Assessment, 2010, 15(4): 251-261
doi: 10.1007/s10666-009-9201-y
17 LenziM A, Di LuzioM. Surface runoff, soil erosion and water quality modelling in the Alpone watershed using AGNPS integrated with a Geographic Information System. European Journal of Agronomy, 1997, 6(1-2): 1-14
doi: 10.1016/S1161-0301(96)02001-1
18 BhuyanS J, KoellikerJ K, MarzenL J, HarringtonJ A Jr. An integrated approach for water quality assessment of a Kansas watershed. Environmental Modelling & Software, 2003, 18(5): 473-484
doi: 10.1016/S1364-8152(03)00021-5
19 HeC. Integration of geographic information systems and simulation model for watershed management. Environmental Modelling & Software, 2003, 18(8-9): 809-813
doi: 10.1016/S1364-8152(03)00080-X
20 ArnoldJ G, AllenP M. Estimating hydrologic budgets for three Illinois watersheds. Journal of Hydrology (Amsterdam), 1996, 176(1-4): 57-77
doi: 10.1016/0022-1694(95)02782-3
21 SuiD Z, MaggioR C. Integrating GIS with hydrological modelling: practices, problems, and prospects. Computers, Environment and Urban Systems, 1999, 23(1): 33-51
doi: 10.1016/S0198-9715(98)00052-0
22 PullarD, SpringerD. Towards integrating GIS and catchment models. Environmental Modelling & Software, 2000, 15(5): 451-459
doi: 10.1016/S1364-8152(00)00023-2
23 ESRI. Using ArcMap. Environmental Systems Research Institute Inc,USA. 2000
24 HeathwaiteA L, DilsR M, LiuS, CarvalhoL, BrazierR E, PopeL, HughesM, PhillipsG, MayL. A tiered risk-based approach for predicting diffuse and point source phosphorus losses in agricultural areas. Science of Total Environment, 2005, 344(1-3): 225-239
doi: 10.1016/j.scitotenv.2005.02.034 pmid: 15907520
25 WoodR L, HeathwaiteA L, HaygarthP M. Evaluating diffuse and point phosphorus contributions to river transfers at different scales in the Taw catchment, Devon, UK. Journal of Hydrology (Amsterdam), 2005, 304(1-4): 118-138
doi: 10.1016/j.jhydrol.2004.07.026
[1] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[2] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[3] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[4] Chao Pan, Daniel Giammar. Interplay of transport processes and interfacial chemistry affecting chromium reduction and reoxidation with iron and manganese[J]. Front. Environ. Sci. Eng., 2020, 14(5): 81-.
[5] Wei Fan, Qi Li, Mingxin Huo, Xiaoyu Wang, Shanshan Lin. Transport of bacterial cell (E. coli) from different recharge water resources in porous media during simulated artificial groundwater recharge[J]. Front. Environ. Sci. Eng., 2020, 14(4): 63-.
[6] Quan Zheng, Minglu Zhang, Tingting Zhang, Xinhui Li, Minghan Zhu, Xiaohui Wang. Insights from metagenomic, metatranscriptomic, and molecular ecological network analyses into the effects of chromium nanoparticles on activated sludge system[J]. Front. Environ. Sci. Eng., 2020, 14(4): 60-.
[7] Ouchen Cai, Yuanxiao Xiong, Haijun Yang, Jinyong Liu, Hui Wang. Phosphorus transformation under the influence of aluminum, organic carbon, and dissolved oxygen at the water-sediment interface: A simulative study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 50-.
[8] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[9] Aifeng Zhai, Xiaowen Ding, Lin Liu, Quan Zhu, Guohe Huang. Total phosphorus accident pollution and emergency response study based on geographic information system in Three Gorges Reservoir area[J]. Front. Environ. Sci. Eng., 2020, 14(3): 46-.
[10] Xuying Ma, Ian Longley, Jennifer Salmond, Jay Gao. PyLUR: Efficient software for land use regression modeling the spatial distribution of air pollutants using GDAL/OGR library in Python[J]. Front. Environ. Sci. Eng., 2020, 14(3): 44-.
[11] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[12] Xiaoya Liu, Yu Hong, Peirui Liu, Jingjing Zhan, Ran Yan. Effects of cultivation strategies on the cultivation of Chlorella sp. HQ in photoreactors[J]. Front. Environ. Sci. Eng., 2019, 13(5): 78-.
[13] Nan Zhao, Huu Hao Ngo, Yuyou Li, Xiaochang Wang, Lei Yang, Pengkang Jin, Guangxi Sun. A comprehensive simulation approach for pollutant bio-transformation in the gravity sewer[J]. Front. Environ. Sci. Eng., 2019, 13(4): 62-.
[14] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
[15] Guangrong Sun, Chuanyi Zhang, Wei Li, Limei Yuan, Shilong He, Liping Wang. Effect of chemical dose on phosphorus removal and membrane fouling control in a UCT-MBR[J]. Front. Environ. Sci. Eng., 2019, 13(1): 1-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed