Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (5) : 784-791    https://doi.org/10.1007/s11783-013-0590-4
RESEARCH ARTICLE
Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs)
Sanath KONDAVEETI,Kwang Soon CHOI,Ramesh KAKARLA,Booki MIN()
Department of Environmental Science and Engineering, Kyung Hee University, Gyeonggi-do 446-701, Republic of Korea
 Download: PDF(415 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Renewable algae biomass, Scenedesmus obliquus, was used as substrate for generating electricity in two chamber microbial fuel cells (MFCs). From polarization test, maximum power density with pretreated algal biomass was 102 mW·m-2 (951 mW·m-3) at current generation of 276 mA·m-2. The individual electrode potential as a function of current generation suggested that anodic oxidation process of algae substrate had limitation for high current generation in MFC. Total chemical oxygen demand (TCOD) reduction of 74% was obtained when initial TCOD concentration was 534 mg·L-1 for 150 h of operation. The main organic compounds of algae oriented biomass were lactate and acetate, which were mainly used for electricity generation. Other by-products such as propionate and butyrate were formed at a negligible amount. Electrochemical Impedance Spectroscopy (EIS) analysis pinpointed the charge transfer resistance (112 ?) of anode electrode, and the exchange current density of anode electrode was 1214 nA·cm-2.

Keywords microbial fuel cell (MFC)      algae      bioelectricity      substrate      volatile fatty acid      biomass      COD removal efficiency     
Corresponding Author(s): Booki MIN   
Issue Date: 20 June 2014
 Cite this article:   
Sanath KONDAVEETI,Kwang Soon CHOI,Ramesh KAKARLA, et al. Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs)[J]. Front.Environ.Sci.Eng., 2014, 8(5): 784-791.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0590-4
https://academic.hep.com.cn/fese/EN/Y2014/V8/I5/784
Fig.1  Voltage generation in MFC using wastewater medium and synthetic growth medium along with algae as a substrate
Fig.2  Voltage and maximum power density generation (a) as a function of current density by varying the external resistance from 1000 K? to 10 ?; (b) anode and cathode potential as a function of current density, which were obtained during the polarization
substratemaximum power density/(mW·m-2)coulombic efficiencytype of reactor operatedreference
acetate4072.3double chamber[20]
butyrate3843double chamber[20]
propionate5836double chamber[20]
glucose16015double chamber[20]
ethanol4042double chamber[21]
xylose82*double chamber[22]
starch14*double chamber[23]
Chlorella vulgaris(algal biomass)980a)28single chamber[12]
Ulva lactuca(algal biomass)750a)23single chamber[12]
Scenedesmus(algal biomass)560*double chamber[13]
Mixed culture(algal sludge as biomass)311*double chamber[11]
Scenedesmus obliquus(algal biomass)1027.8double chamberthis study
swine wastewater26120single chamber[24]
sewage sludge8.5 b)*double chamber[25]
chemical wastewater675.7double chamber[26]
corn Stover Bio mass37030single chamber[27]
xylose and humic acid4241double chamber[28]
surplus Sludge220*double chamber[29]
dairy wastewater10*single chamber[30]
Tab.1  MFC power generations with algae biomass and the comparison with different complex and simple substrates
Fig.3  Power density and COD removal (TCOD and SCOD) as a function of time in MFC operating with growth media and algae as a substrate
Fig.4  Byproducts formation (VFAs) and hexose degradation during the operation of MFC in a single fed batch cycle
Fig.5  EIS data representation using the Nyquist plot in MFC operating with algae as substrate and by using anode as the working electrode
1 De SchamphelaireL, van den BosscheL, DangH S, HöfteM, BoonN, RabaeyK, VerstraeteW. Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environmental Science & Technology, 2008, 42(8): 3053-3058
doi: 10.1021/es071938w pmid: 18497165
2 LeeS H, KondaveetiS, MinB, ParkH D. Enrichment of clostridia during the operation of an external-powered bio-electrochemical denitrification system. Process Biochemistry, 2013, 48(2): 306-311
doi: 10.1016/j.procbio.2012.11.020
3 SanderK, MurthyG. Life cycle analysis of algae biodiesel. International Journal of Life Cycle Assessment, 2010, 15(7): 704-714
doi: 10.1007/s11367-010-0194-1
4 ScottS A, DaveyM P, DennisJ S, HorstI, HoweC J, Lea-SmithD J, SmithA G. Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology, 2010, 21(3): 277-286
doi: 10.1016/j.copbio.2010.03.005 pmid: 20399634
5 PyleD J, GarciaR A, WenZ. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. Journal of Agricultural and Food Chemistry, 2008, 56(11): 3933-3939
doi: 10.1021/jf800602s pmid: 18465872
6 MataT M, MartinsA A, CaetanoN S. Microalgae for biodiesel production and other applications: A review. Renewable & Sustainable Energy Reviews, 2010, 14(1): 217-232
doi: 10.1016/j.rser.2009.07.020
7 PatilP D, GudeV G, MannarswamyA, DengS, CookeP, Munson-McGeeS, RhodesI, LammersP, NirmalakhandanN. Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresource Technology, 2011, 102(1): 118-122
doi: 10.1016/j.biortech.2010.06.031 pmid: 20591655
8 GoluekeC G, OswaldW J. Power from solar energy—Via algae-produced methane. Solar Energy, 1963, 7(3): 86-92
doi: 10.1016/0038-092X(63)90033-1
9 ManeeruttanarungrojC, LindbladP, IncharoensakdiA. A newly isolated green alga, Tetraspora sp.CU2551, from Thailand with efficient hydrogen production. International Journal of Hydrogen Energy, 2010, 35(24): 13193-13199
doi: 10.1016/j.ijhydene.2010.08.096
10 VologniV, KakarlaR, AngelidakiI, MinB. Increased power generation from primary sludge by a submersible microbial fuel cell and optimum operational conditions. Bioprocess and Biosystems Engineering, 2013, 36(5): 635-642
pmid: 22644063
11 WangH, LuL, CuiF, LiuD, ZhaoZ, XuY. Simultaneous bioelectrochemical degradation of algae sludge and energy recovery in microbial fuel cells. RSC Advances, 2012, 2(18): 7228-7234
doi: 10.1039/c2ra20631e
12 Velasquez-OrtaS B, CurtisT P, LoganB E. Energy from algae using microbial fuel cells. Biotechnology and Bioengineering, 2009, 103(6): 1068-1076
doi: 10.1002/bit.22346 pmid: 19418564
13 RashidN, CuiY F, Saif Ur RehmanM, HanJ I. Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Science of the Total Environment, 2013, 456-457: 91-94
doi: 10.1016/j.scitotenv.2013.03.067 pmid: 23584037
14 MandalS, MallickN. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 2009, 84(2): 281-291
doi: 10.1007/s00253-009-1935-6 pmid: 19330327
15 BeckerE W. Micro-algae as a source of protein. Biotechnology Advances, 2007, 25(2): 207-210
doi: 10.1016/j.biotechadv.2006.11.002 pmid: 17196357
16 NguyenT A D, KimK R, NguyenM T, KimM S, KimD, SimS J. Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods. International Journal of Hydrogen Energy, 2010, 35(23): 13035-13040
doi: 10.1016/j.ijhydene.2010.04.062
17 APHA. Standard Methods for the Examinatinon of Water and Wastewater. Washington, D C: American Public Health Association, 2005
18 LudwigT G, GoldbergJ V. The anthrone method for the determination of carbohydrates in foods and in oral rinsing. Journal of Dental Research, 1956, 35(1): 90-94
doi: 10.1177/00220345560350012301 pmid: 13286391
19 MohanY, DasD. Effect of ionic strength, cation exchanger and inoculum age on the performance of Microbial Fuel Cells. International Journal of Hydrogen Energy, 2009, 34(17): 7542-7546
doi: 10.1016/j.ijhydene.2009.05.101
20 ChaeK J, ChoiM J, LeeJ W, KimK Y, KimI S. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresource Technology, 2009, 100(14): 3518-3525
doi: 10.1016/j.biortech.2009.02.065 pmid: 19345574
21 KimJ R, JungS H, ReganJ M, LoganB E. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology, 2007, 98(13): 2568-2577
doi: 10.1016/j.biortech.2006.09.036 pmid: 17097875
22 HuangL, ZengR J, AngelidakiI. Electricity production from xylose using a mediator-less microbial fuel cell. Bioresource Technology, 2008, 99(10): 4178-4184
doi: 10.1016/j.biortech.2007.08.067 pmid: 17964145
23 NiessenJ, SchröderU, ScholzF. Exploiting complex carbohydrates for microbial electricity generation - a bacterial fuel cell operating on starch. Electrochemistry Communications, 2004, 6(9): 955-958
doi: 10.1016/j.elecom.2004.07.010
24 MinB, KimJ, OhS, ReganJ M, LoganB E. Electricity generation from swine wastewater using microbial fuel cells. Water Research, 2005, 39(20): 4961-4968
doi: 10.1016/j.watres.2005.09.039 pmid: 16293279
25 JiangJ, ZhaoQ, ZhangJ, ZhangG, LeeD J. Electricity generation from bio-treatment of sewage sludge with microbial fuel cell. Bioresource Technology, 2009, 100(23): 5808-5812
doi: 10.1016/j.biortech.2009.06.076 pmid: 19615894
26 Venkata MohanS, MohanakrishnaG, SrikanthS, SarmaP N. Harnessing of bioelectricity in microbial fuel cell (MFC) employing aerated cathode through anaerobic treatment of chemical wastewater using selectively enriched hydrogen producing mixed consortia. Fuel, 2008, 87(12): 2667-2676
doi: 10.1016/j.fuel.2008.03.002
27 ZuoY, ManessP C, LoganB E. Electricity production from steam-exploded corn stover biomass. Energy & Fuels, 2006, 20(4): 1716-1721
doi: 10.1021/ef060033l
28 HuangL, AngelidakiI. Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells. Biotechnology and Bioengineering, 2008, 100(3): 413-422
doi: 10.1002/bit.21786 pmid: 18306421
29 LiuZ, LiX, JiaB, ZhengY, FangL, YangQ, WangD, ZengG. Production of electricity from surplus sludge using a single chamber floating-cathode microbial fuel cell. Water Science and Technology, 2009, 60(9): 2399-2404
doi: 10.2166/wst.2009.313 pmid: 19901472
30 Venkata MohanS, MohanakrishnaG, VelvizhiG, BabuV L, SarmaP N. Bio-catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation. Biochemical Engineering Journal, 2010, 51(1-2): 32-39
doi: 10.1016/j.bej.2010.04.012
31 FanY, SharbroughE, LiuH. Quantification of the internal resistance distribution of microbial fuel cells. Environmental Science & Technology, 2008, 42(21): 8101-8107
doi: 10.1021/es801229j pmid: 19031909
32 KondaveetiS, MinB. Nitrate reduction with biotic and abiotic cathodes at various cell voltages in bioelectrochemical denitrification system. Bioprocess and Biosystems Engineering, 2013, 36(2): 231-238
doi: 10.1007/s00449-012-0779-0 pmid: 22814899
33 RamasamyR P, RenZ, MenchM M, ReganJ M. Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotechnology and Bioengineering, 2008, 101(1): 101-108
doi: 10.1002/bit.21878 pmid: 18646217
[1] Tao Liu, Yudong Song, Zhiqiang Shen, Yuexi Zhou. Inhibition character of crotonaldehyde manufacture wastewater on biological acidification[J]. Front. Environ. Sci. Eng., 2021, 15(6): 119-.
[2] Violeta Makareviciene, Egle Sendzikiene, Ieva Gaide. Application of heterogeneous catalysis to biodiesel synthesis using microalgae oil[J]. Front. Environ. Sci. Eng., 2021, 15(5): 97-.
[3] Yanxia Zhao, Huiqing Lian, Chang Tian, Haibo Li, Weiying Xu, Sherub Phuntsho, Kaimin Shih. Surface water treatment benefits from the presence of algae: Influence of algae on the coagulation behavior of polytitanium chloride[J]. Front. Environ. Sci. Eng., 2021, 15(4): 58-.
[4] Xuesong Liu, Jianmin Wang. Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia[J]. Front. Environ. Sci. Eng., 2020, 14(6): 97-.
[5] Madhavaraj Lavanya, Ho-Dong Lim, Kong-Min Kim, Dae-Hyuk Kim, Balasubramani Ravindran, Gui Hwan Han. A novel strategy for gas mitigation during swine manure odour treatment using seaweed and a microbial consortium[J]. Front. Environ. Sci. Eng., 2020, 14(3): 53-.
[6] Quan Yuan, Hui Gong, Hao Xi, Kaijun Wang. Aerobic granular sludge formation based on substrate availability: Effects of flow pattern and fermentation pretreatment[J]. Front. Environ. Sci. Eng., 2020, 14(3): 49-.
[7] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[8] Caiyun Hou, Sen Qiao, Yue Yang, Jiti Zhou. A novel sequence batch membrane carbonation photobioreactor developed for microalgae cultivation[J]. Front. Environ. Sci. Eng., 2019, 13(6): 92-.
[9] Ziming Zhao, Wenjun Sun, Madhumita B. Ray, Ajay K Ray, Tianyin Huang, Jiabin Chen. Optimization and modeling of coagulation-flocculation to remove algae and organic matter from surface water by response surface methodology[J]. Front. Environ. Sci. Eng., 2019, 13(5): 75-.
[10] Victor M. Deantes-Espinosa, Tian-Yuan Zhang, Xiao-Xiong Wang, Yinhu Wu, Guo-Hua Dao, Hong-Ying Hu. Attached cultivation of Scenedesmus sp. LX1 on selected solids and the effect of surface properties on attachment[J]. Front. Environ. Sci. Eng., 2019, 13(4): 57-.
[11] Zhiqiang Chen, Lizhi Zhao, Ye Ji, Qinxue Wen, Long Huang. Reconsideration on the effect of nitrogen on mixed culture polyhydroxyalkanoate production toward high organic loading enrichment history[J]. Front. Environ. Sci. Eng., 2019, 13(4): 54-.
[12] Mei Lei, Ziping Dong, Ying Jiang, Philip Longhurst, Xiaoming Wan, Guangdong Zhou. Reaction mechanism of arsenic capture by a calcium-based sorbent during the combustion of arsenic-contaminated biomass: A pilot-scale experience[J]. Front. Environ. Sci. Eng., 2019, 13(2): 24-.
[13] Yanqing Duan, Aijuan Zhou, Kaili Wen, Zhihong Liu, Wenzong Liu, Aijie Wang, Xiuping Yue. Upgrading VFAs bioproduction from waste activated sludge via co-fermentation with soy sauce residue[J]. Front. Environ. Sci. Eng., 2019, 13(1): 3-.
[14] Xinfeng Wang, Lu Lin, Haifeng Lu, Zhidan Liu, Na Duan, Taili Dong, Hua Xiao, Baoming Li, Pei Xu. Microalgae cultivation and culture medium recycling by a two-stage cultivation system[J]. Front. Environ. Sci. Eng., 2018, 12(6): 14-.
[15] Kishore Gopalakrishnan, Javad Roostaei, Yongli Zhang. Mixed culture of Chlorella sp. and wastewater wild algae for enhanced biomass and lipid accumulation in artificial wastewater medium[J]. Front. Environ. Sci. Eng., 2018, 12(4): 14-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed