Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2014, Vol. 8 Issue (1) : 89-98    https://doi.org/10.1007/s11783-013-0591-3
RESEARCH ARTICLE
Evaluation of soil microbial toxicity of waste foundry sand for soil-related reuse
Haifeng ZHANG1,2, Lu SU1, Xiangyu LI1, Jiane ZUO1, Guangli LIU3, Yujue WANG1,2()
1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
2. Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314000, China
3. Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
 Download: PDF(188 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The relationship between the chemical contaminants and soil microbial toxicity of waste foundry sand (WFS) was investigated. Five different types of WFS from typical ferrous, aluminum, and steel foundries in China were examined for total metals, leachable metals, and organic contaminants. The soil microbial toxicity of each WFS was evaluated by measuring the dehydrogenase activity (DHA) of a blended soil and WFS mixture and then comparing it to that of unblended soil. The results show that the five WFSs had very different compositions of metal and organic contaminants and thus exhibited very different levels of soil microbial inhibition when blended with soil. For a given WFS blended with soil in the range of 10 wt.%–50 wt.% WFS, the DHA decreased almost linearly with increased blending ratio. Furthermore, for a given blending ratio, the WFSs with higher concentrations of metal and organic contaminants exhibited greater microbial toxicity. Correlation analysis shows that the relationship between ecotoxicity and metal and organic contaminants of WFSs can be described by an empirical logarithmic linear model. This model may be used to control WFS blending ratios in soil-related applications based on chemical analysis results to prevent significant inhibition of soil microbial activity.

Keywords waste foundry sand      toxicity      bioassay      soil microbial activity      waste reuse     
Corresponding Author(s): Yujue WANG   
Issue Date: 01 February 2014
 Cite this article:   
Haifeng ZHANG,Lu SU,Xiangyu LI, et al. Evaluation of soil microbial toxicity of waste foundry sand for soil-related reuse[J]. Front. Environ. Sci. Eng., 2014, 8(1): 89-98.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0591-3
https://academic.hep.com.cn/fese/EN/Y2014/V8/I1/89
sample metal poured description
soil collected from an agricultural field in a suburban area south of Beijing
WFS1 iron SO2 cured hotbox and coldbox
WFS2 iron green sand mold and phenolic urethane core
WFS3 aluminum shell
WFS4 steel phenolic urethane no-bake
WFS5 iron Furan no-bake
Tab.1  Description of the soil and waste foundry sands (WFSs) used in this study
total metal (mg·kg−1 dry wt.) a) soil control WFS1 WFS2 WFS3 WFS4 WFS5 soils across China [22]
Al 24750.95 8302.62 8091.17 3143.17 1845.29 2529.83
Fe 23423.25 4289.01 3970.97 1799.57 4053.29 1622.40 10500−48400
Mg 10224.15 1425.00 1893.22 297.86 846.03 225.88
Mn 458.01 61.78 68.99 29.14 69.27 26.03 130−1786
Ag 0.61 0.02 0.10 ND b) ND ND
As 7.61 0.90 0.88 40.27 0.38 0.19
B 41.47 5.27 3.26 5.01 2.50 2.12
Ba 157.21 105.54 111.03 58.04 10.87 62.70
Be 1.09 0.18 0.19 0.05 0.03 0.07
Cd 0.17 0.01 0.03 0.22 ND ND 0.017−0.33
Co 9.83 1.23 1.13 0.39 2.11 0.62
Cr 39.03 181.81 4.12 14.11 580.65 4.75 19.3−150
Cu 26.82 1.92 6.23 3.70 2.07 2.61 7.3−55.1
Mo 0.22 0.13 0.06 0.03 0.27 0.28
Ni 25.51 2.21 1.70 1.14 6.24 1.68 7.7−71.0
Pb 17.41 1.69 2.86 1.57 1.94 1.41 10.0−56.1
Sb 0.14 0.05 0.19 12.54 0.14 0.01
V 33.12 9.97 7.53 4.01 14.02 3.08
Zn 56.30 6.96 36.09 102.29 8.92 4.89 28.4−161
sum 59272.90 14396.30 14199.75 5513.11 7444.02 4488.55
Tab.2  Concentrations of total metals of waste foundry sand (WFS) and soil control samples
leachable metals (µg·L−1) a) WFS1 WFS2 WFS3 WFS4 WFS5 TCLP regulatory limits [23]
Al 768.65 749.23 192.25 1946.18 1728.77
Fe 449.50 39.33 1563.50 888.70 4413.30
Mg 3531.94 5074.50 753.88 2492.55 712.51
Mn 615.50 636.13 43.80 527.82 143.63
Ag ND b) ND ND ND ND 5000
As 2.89 15.38 363.83 1.14 ND 5000
B 26.25 56.83 17.77 23.22 14.83
Ba 1276.57 1080.15 87.89 18.34 80.13 100000
Be 0.98 0.76 0.50 ND 0.15 20
Cd 0.49 0.58 5.44 ND ND 1000
Co 3.99 2.91 1.02 1.91 6.49
Cr ND ND ND 10.48 ND 15000
Cu 38.72 7.51 28.07 ND 9.87 100000
Mo 7.40 ND 9.26 4.63 ND
Ni 30.46 24.09 9.10 18.14 2.45 5000
Pb 72.10 118.22 98.48 ND ND 5000
Sb 23.81 17.69 30.08 7.43 ND
V 87.40 ND 23.80 ND 49.70
Zn 545.23 507.03 975.17 426.83 218.53 100000
sum 7481.88 8330.34 4206.64 6374.90 7380.75
Tab.3  Concentrations of leachable metals of waste foundry sand (WFS) samples
compounds(mg·kg−1) WFS1 WSF2 WFS3 WFS4 WFS5 regulated limits [29] TCLP regulatory limits [23] (mg·L−1)
toluene 47.27 112.55 1.54 NQ NQ 1
ethylbenzene 9.44 16.36 NQ NQ NQ 1
m,p-xylene 68.41 97.16 1.34 NQ NQ 4
o-xylene 20.02 34.50 0.43 NQ NQ
benzene, 1,2,4-trimethyl- 83.29 79.03 NQ 4.93 0.77
phenol 675.94 479.84 146.88 27.61 189.72 3
phenol, 2-methyl- 403.32 267.83 15.81 NQ 5.48 30000
phenol, 4-methyl- 226.43 147.62 14.51 NQ 2.45 30000
naphthalene 11.12 2.00 0.05 0.53 1.23
naphthalene,2-methyl- 993.17 58.27 1.32 8.22 135.50
naphthalene,2,6-dimethyl- 630.33 27.79 0.54 11.65 55.79
fluorene 0.55 0.25 NQ NQ NQ
phenanthrene 1.98 0.62 NQ 0.60 NQ
phenanthrene, 2-methyl- 0.41 0.48 0.04 0.68 0.32
anthracene 0.82 0.63 0.06 0.62 0.19
anthracene, 1(2)-methyl- 0.40 NQ 0.04 NQ NQ
fluoranthene 0.60 0.34 NQ NQ 0.04
pyrene 0.46 0.22 NQ NQ NQ
benz[a]anthracene 0.39 0.17 NQ NQ NQ 1000
benz[e]acephenanthrylene 0.83 0.19 NQ NQ NQ
benzo[a]pyrene 0.36 0.06 NQ NQ NQ 1000
benzo[ghi]perylene 0.15 NQ NQ NQ NQ
sum 3175.69 1325.91 182.56 54.84 391.49
Tab.4  Concentration of different organic compounds in the waste foundry sands (WFS)
week sample dehydrogenase activity(μg INTP·g−1 dry soil·2?h−1)
WFS blending ratio
10?wt.% 30?wt.% 50?wt.%
8 soil 98.25
soil-WFS1 92.57 44.33 10.60
soil-WFS2 77.55 36.35 14.98
soil-WFS3 96.03 84.28 49.24
soil-WFS4 99.24 77.32 47.65
soil-WFS5 106.08 98.03 68.48
12 soil 113.96
soil-WFS1 86.82 51.89 16.62
soil-WFS2 90.84 59.51 38.07
soil-WFS3 97.31 72.76 65.95
soil-WFS4 107.68 76.71 66.76
soil-WSF5 104.59 88.83 84.23
Tab.5  Dehydrogenase activities of soil control and soil blended with 10?wt.%, 30?wt.%, and 50?wt.% waste foundry sands (WFS) at 8 weeks and 12 weeks
Fig.1  Correlation between the dehydrogenase activity of blended soil and the WFS blending ratio at (a) 8 weeks, and (b) 12 weeks
Fig.2  Correlation between dehydrogenase activity (DHA) of blended soil and contaminant content of the five WFSs: (a) total metals at 8 weeks, (b) total metals at 12 weeks, (c) organic contaminants at 8 weeks, and (d) organic contaminants at 12 weeks
Fig.3  Comparison between WFS blending ratios determined by bioassay tests and by Eqs. (3) and (4). A 25% decrease in DHA of blended soil was set as the control objective for this comparison
1 USEPA. EPA Office of Compliance Sector Notebook Project: Profile of the Metal Casting Industry. EPA/310-R-97–004. Wasington, DC: USEPA, 1998
2 USEPA and USDT. Foundry Sand Facts for Civil Engineers. FHWA-IF-04–004. Wasington, DC: USEPA and USDT, 2004
3 USEPA. Beneficial Reuse of Foundry Sand: A Review of State Practices and Regulations. Washington, DC: USEPA, 2002
4 G Owens. CRC CARE Technical Report 7: Development of policies for the handling, disposal and/or beneficial reuse of used foundry sand-a literature review, 2008.
5 Y Wang, F S Cannon, M Salama, J Goudzwaard, J C Furness. Characterization of hydrocarbon emissions from green sand foundry core binders by analytical pyrolysis. Environmental Science & Technology, 2007, 41(22): 7922−7927
https://doi.org/10.1021/es071657o pmid: 18075109
6 Y Wang, H Huang, F S Cannon, R C Voigt, S Komarneni, J C Furness. Evaluation of volatile hydrocarbon emission characteristics of carbonaceous additives in green sand foundries. Environmental Science & Technology, 2007, 41(8): 2957−2963
https://doi.org/10.1021/es0628295 pmid: 17533864
7 Y Wang, Y Zhang, L Su, X Li, L Duan, C Wang, T Huang. Hazardous air pollutant formation from pyrolysis of typical Chinese casting materials. Environmental Science & Technology, 2011, 45(15): 6539−6544
https://doi.org/10.1021/es200310p pmid: 21714543
8 Y Wang, F S Cannon, X Li. Comparative analysis of hazardous air pollutant emissions of casting materials measured in analytical pyrolysis and conventional metal pouring emission tests. Environmental Science & Technology, 2011, 45(19): 8529−8535
https://doi.org/10.1021/es2023048 pmid: 21866938
9 R S Dungan. Polycyclic aromatic hydrocarbons and phenolics in ferrous and non-ferrous waste foundry sands. Journal of Residuals Science & Technology, 2006, 3(4): 203−209
10 S Ji, L Wan, Z Fan. The toxic compounds and leaching characteristics of spent foundry sands. Water, Air, and Soil Pollution, 2001, 132(3): 347−364
https://doi.org/10.1023/A:1013207000046
11 R S Dungan, U Kukier, B Lee. Blending foundry sands with soil: effect on dehydrogenase activity. Science of the Total Environment, 2006, 357(1−3): 221−230
https://doi.org/10.1016/j.scitotenv.2005.04.032 pmid: 15975632
12 R S Dungan, N H Dees. The characterization of total and leachable metals in foundry molding sands. Journal of Environmental Management, 2009, 90(1): 539−548
https://doi.org/10.1016/j.jenvman.2007.12.004 pmid: 18194836
13 USEPA. Toxicity Characteristic Leaching Procedure. Method 1311. Washington, DC: USEPA, 1992
14 USEPA. Synthetic Precipitation Leaching Procedure. Method 1312. Washington, DC: USEPA, 1994
15 H Rodríguez, R Fraga. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 1999, 17(4−5): 319−339
https://doi.org/10.1016/S0734-9750(99)00014-2 pmid: 14538133
16 M G A van der Heijden, R D Bardgett, N M van Straalen. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 2008, 11(3): 296−310
https://doi.org/10.1111/j.1461-0248.2007.01139.x pmid: 18047587
17 K C Bastian, J E Alleman. Microtox (TM) characterization of foundry sand residuals. Waste Management (New York, N.Y.), 1998, 18(4): 227−234
https://doi.org/10.1016/S0956-053X(98)00030-0
18 USEPA.Acid Digestion of Sediments, Sludges, and Soils. Method 3050B. Washington, DC: USEPA, 1996
19 USEPA. USEPA Contract Laboratory Program. Statement of Work for Inorganics Analysis, Multi-Media Multi-Concentration. Document ILMO 4.0. EPA/540/R95/121 PB95−963545.Washington, DC: USEPA, 1999
20 T Ma, Y Teng, P Christie, Y Luo, Y Chen, M Ye, Y Huang. A new procedure combining GC-MS with accelerated solvent extraction for the analysis of phthalic acid esters in contaminated soils. Frontiers of Environmental Science & Engineering, 2013, 7(1): 31−42
https://doi.org/10.1007/s11783-012-0463-2
21 P Popp, P Keil, M Moder, A Paschke, U Thuss. Application of accelerated solvent extraction followed by gas chromatography, high-performance liquid chromatography and gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons, chlorinated pesticides and polychlorinated dibenzo-p-dioxins and dibenzofurans in solid wastes. Journal of Chromatography. A, 1997, 774(1−2): 203−211
https://doi.org/10.1016/S0021-9673(97)00337-3
22 F Wei, J Chen, Y Wu, C Zheng. Study on the soil background value in China. Environmental Sciences, 1991, 12(4): 12−19
23 Ministry of Environmental Protection, General Administration of Quality Supervision, Inspection and Quarantine. GB5085. 3−2007. Identification Standards for Hazardous Wastes-Identification for Extraction Toxicity. Beijing: Ministry of Environmental Protection of the People’s Republic of China, General Administration of Quality Supervision, Inspection and uarantine of the People’s Republic of China, 2007 (in Chinese)
24 D Fahnline, R Sr Regan. Leaching of metals from beneficially used foundry residuals into soils. In: Proceedings of the 50th Industrial Waste Conference, 1995, West Lafayette. Chelsea: Ann Arbor Press, 1996, 5: 339−347
25 E Winkler, A Bol’shakov. Characterization of Foundry Sand Waste. MA: Chelsea Center for Recycling and Economic Development, University of Massachusetts at Lowell, USA, 2000
26 R S Dungan. Headspace solid−phase microextraction (HS‐SPME) for the determination of benzene, toluene, ethylbenzene, and xylenes (BTEX) in foundry molding sand. Analytical Letters, 2005, 38(14): 2393−2405
https://doi.org/10.1080/00032710500318007
27 Y Wang, F S Cannon, M Salama, D A Fonseca, S Giese. Characterization of pyrolysis products from a biodiesel phenolic urethane binder. Environmental Science & Technology, 2009, 43(5): 1559−1564
https://doi.org/10.1021/es8024929 pmid: 19350935
28 R S Dungan, J B Reeves. Pyrolysis of carbonaceous foundry sand additives: seacoal and gilsonite. Thermochimica Acta, 2007, 460(1): 60−66
https://doi.org/10.1016/j.tca.2007.05.020
29 Ministry of Environmental Protection, General Administration of Quality Supervision, Inspection and Quarantine. GB5085.6−2007. Identification Standards for Hazardous Wastes−Identification for Toxic Substance Content. Beijing: Ministry of Environmental Protection of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2007 (in Chinese)
30 J P Obbard. Measurement of dehydrogenase activity using 2-p-iodophenyl-3-p-nitrophenyl-5-phenyltetrazolium chloride (INT) in the presence of copper. Biology and Fertility of Soils, 2001, 33(4): 328−330
https://doi.org/10.1007/s003740000332
31 Q Shan, Y Yu, J Yu, J Zhang. Soil enzyme activities and their indication for fertility of urban forest soil. Frontiers of Environmental Science & Engineering in China, 2008, 2(2): 218−223
https://doi.org/10.1007/s11783-008-0037-5
32 A Coz, A Andrés, Á Irabien. Ecotoxicity assessment of stabilized/solidified foundry sludge. Environmental Science & Technology, 2004, 38(6): 1897−1900
https://doi.org/10.1021/es034913f pmid: 15074704
33 D G Heijerick, C R Janssen, C Karlèn, I Odnevall Wallinder, C Leygraf. Bioavailability of zinc in runoff water from roofing materials. Chemosphere, 2002, 47(10): 1073−1080
https://doi.org/10.1016/S0045-6535(02)00014-0 pmid: 12137040
34 S Ren, P D Frymier. Kinetics of the toxicity of metals to luminescent bacteria. Advances in Environmental Research, 2003, 7(2): 537−547
https://doi.org/10.1016/S1093-0191(02)00022-9
35 J C Dearden, M T D Cronin, A J Dobbs. Quantitative structure-activity relationships as a tool to assess the comparative toxicity of organic chemicals. Chemosphere, 1995, 31(1): 2521−2528
https://doi.org/10.1016/0045-6535(95)00121-N pmid: 7670864
[1] Tao Li, Xiufeng Cao, Rui Zhao, Zhaojie Cui. Stress response to nanoplastics with different charges in Brassica napus L. during seed germination and seedling growth stages[J]. Front. Environ. Sci. Eng., 2023, 17(4): 43-.
[2] Shuqin Liu, Rui Wu, Xi Yang, Shuting Fang, Zhangmin Xiang, Shenghong Yang, Gangfeng Ouyang. Water-dispersible nano-pollutions reshape microbial metabolism in type-specific manners: A metabolic and bacteriological investigation in Escherichia coli[J]. Front. Environ. Sci. Eng., 2022, 16(9): 116-.
[3] Shengqi Zhang, Chengsong Ye, Wenjun Zhao, Lili An, Xin Yu, Lei Zhang, Hongjie Sun, Mingbao Feng. Product identification and toxicity change during oxidation of methotrexate by ferrate and permanganate in water[J]. Front. Environ. Sci. Eng., 2022, 16(7): 93-.
[4] Xuesong Liu, Jianmin Wang, Yue-Wern Huang. Understanding the role of nano-TiO2 on the toxicity of Pb on C. dubia through modeling–Is it additive or synergistic?[J]. Front. Environ. Sci. Eng., 2022, 16(5): 59-.
[5] Hasti Daraei, Kimia Toolabian, Ian Thompson, Guanglei Qiu. Biotoxicity evaluation of zinc oxide nanoparticles on bacterial performance of activated sludge at COD, nitrogen, and phosphorus reduction[J]. Front. Environ. Sci. Eng., 2022, 16(2): 19-.
[6] Qinghui Sun, Juan Li, Chen Wang, Anqi Chen, Yanli You, Shupeng Yang, Huihui Liu, Guibin Jiang, Yongning Wu, Yanshen Li. Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment[J]. Front. Environ. Sci. Eng., 2022, 16(1): 1-.
[7] Mengjun Chen, Oladele A. Ogunseitan. Zero E-waste: Regulatory impediments and blockchain imperatives[J]. Front. Environ. Sci. Eng., 2021, 15(6): 114-.
[8] Yi Qian, Weichuan Qiao, Yunhao Zhang. Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression[J]. Front. Environ. Sci. Eng., 2021, 15(5): 100-.
[9] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[10] Barsha Roy, Khushboo Kadam, Suresh Palamadai Krishnan, Chandrasekaran Natarajan, Amitava Mukherjee. Assessing combined toxic effects of tetracycline and P25 titanium dioxide nanoparticles using Allium cepa bioassay[J]. Front. Environ. Sci. Eng., 2021, 15(1): 6-.
[11] Xuesong Liu, Jianmin Wang. Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia[J]. Front. Environ. Sci. Eng., 2020, 14(6): 97-.
[12] Xuewen Yi, Zhanqi Gao, Lanhua Liu, Qian Zhu, Guanjiu Hu, Xiaohong Zhou. Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental conditions and a case study in Luoma Lake, East China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 109-.
[13] Shengkun Dong, Chenyue Yin, Xiaohong Chen. Toxicity-oriented water quality engineering[J]. Front. Environ. Sci. Eng., 2020, 14(5): 80-.
[14] Ting Zhang, Heze Liu, Yiyuan Zhang, Wenjun Sun, Xiuwei Ao. Comparative genotoxicity of water processed by three drinking water treatment plants with different water treatment procedures[J]. Front. Environ. Sci. Eng., 2020, 14(3): 39-.
[15] Qian-Yuan Wu, Yi-Jun Yan, Yao Lu, Ye Du, Zi-Fan Liang, Hong-Ying Hu. Identification of important precursors and theoretical toxicity evaluation of byproducts driving cytotoxicity and genotoxicity in chlorination[J]. Front. Environ. Sci. Eng., 2020, 14(2): 25-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed