Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (4) : 483-495    https://doi.org/10.1007/s11783-013-0595-z
RESEARCH ARTICLE
Novel synthetic approaches and TWC catalytic performance of flower-like Pt/CeO2
Zongcheng ZHAN,Xiaojun LIU,Dongzhu MA,Liyun SONG,Jinzhou LI,Hong HE(),Hongxing DAI
Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
 Download: PDF(2134 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel Ultrasonic Assisted Membrane Reduction (UAMR)-hydrothermal method was used to prepare flower-like Pt/CeO2 catalysts. The texture, physical/chemical properties, and reducibility of the flower-like Pt/CeO2 catalysts were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), N2 adsorption, and hydrogen temperature programmed reduction (H2-TPR) techniques. The catalytic performance of the catalysts for treating automobile emission was studied relative to samples prepared by the conventional wetness impregnation method. The Pt/CeO2 catalysts fabricated by this novel method showed high specific surface area and metal dispersion, excellent three-way catalytic activity, and good thermal stability. The strong interaction between the Pt nanoparticles and CeO2 improved the thermal stability. The Ce4+ ions were incorporated into the surfactant chains and the Pt nanoparticles were stabilized through an exchange reaction of the surface hydroxyl groups. The SEM results demonstrated that the Pt/CeO2 catalysts had a typical three-dimensional (3D) hierarchical porous structure, which was favorable for surface reaction and enhanced the exposure degree of the Pt nanoparticles. In brief, the flower-like Pt/CeO2 catalysts prepared by UAMR-hydrothermal method exhibited a higher Pt metal dispersion, smaller particle size, better three-way catalytic activity, and improved thermal stability versus conventional materials.

Keywords three-way catalyst      flower-like      Ultrasonic Assisted Membrane Reduction (UAMR)      Pt nanoparticles     
Corresponding Author(s): Hong HE   
Issue Date: 11 June 2014
 Cite this article:   
Zongcheng ZHAN,Xiaojun LIU,Dongzhu MA, et al. Novel synthetic approaches and TWC catalytic performance of flower-like Pt/CeO2[J]. Front.Environ.Sci.Eng., 2014, 8(4): 483-495.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0595-z
https://academic.hep.com.cn/fese/EN/Y2014/V8/I4/483
Fig.1  A diagram of the UAMR system. (1) Peristaltic pump, (2) constant flowing pump, (3, 4) beaker, (5) UAMR reactor, (6) ultrasonic system, and (7) ceramic membrane tubes
Fig.2  Light off (T50, a, b,c) and full conversion temperatures (T90, d, e, f ) of CO, HC and NOx elimination over the fresh (UH) and aged (UHa) Pt/CeO2-UH as well as fresh (CI) and aged (CIa) Pt/CeO2-CI catalysts. Reaction condition: 1.6% CO+1.0% O2+500 ppm HC (C3H8+C3H6) +1000 ppm NO balanced with N2, GHSV=120000 h-1
Fig.3  Nitrogen adsorption-desorption isotherms (a) and BJH pore size distribution (b) for the fresh Pt/CeO2-UH catalysts, as well as XRD patterns for the fresh (c) and aged (d) Pt/CeO2-UH catalysts with Pt loading (x) of 0.2, 0.6, and 1.0 wt.%
X valuesurface area/(m2·g-1)pore volume/(cm3·g-1)pore size/nmmetal dispersion /%metallic surface area /(m2·g-1 metal)active particle diameter /nm
freshagedfreshagedfreshaged
0.272a)0.08a)6.0a)67.82a)/35.7b)43.72a)/12.93b)298.49a) /128.9b)191.7a) /40.6b)1.6a)/2.3b)5.3 a) /9.1b)
0.678a)0.09a)5.0a)66.73a)/ 30.0b)44.36 a)/15.37b)293.7a) /127.6b)201.9a) /42.9b)1.6 a) /3.8b)4.7 a) /10.3b)
1.082a)0.10a)5.1a)66.84a)/ 31.0b)40.71 a)/16.8b)294.2a) /145.5b)196.7a) /48.5b)1.6 a) /3.8b)5.0 a) /8.9b)
Tab.1  Physical/chemical properties for the Pt/CeO2 catalysts
x valued (111) /ÅA /ÅV3d/nm
freshagedfreshagedfreshagedfreshaged
0.23.1063.0965.3805.363155.76154.2916.9336.14
0.63.1053.0945.3775.359155.52153.9515.0334.61
1.03.1013.0955.3705.361154.87154.0913.5939.49
Tab.2  Interplanar spacing d, lattice constants a, lattice volume crystal V, and crystal size d of the Pt/CeO2-UH catalyst a)
Fig.4  SEM images of fresh (a-c) and aged (d-f) Pt/CeO2-UH catalysts with the Pt loading (x) of 0.2 wt.% (a, d), 0.6 wt.% (b, e), and 1.0 wt.% (c,f)
Fig.5  HRTEM and SAED images (top right inset) of fresh (a-c) and aged (d-f) Pt/CeO2-UH catalysts with the Pt loading (x) of 0.2 wt.% (a, d), 0.6 wt.% (b, e), and 1.0 wt.% (d, f)
Fig.6  H2-TPR profiles of (a) fresh Pt/CeO2-UH, (b) aged Pt/CeO2-UH, (c) fresh Pt/CeO2-CI, and (d) aged Pt/CeO2-CI catalysts with Pt loading (x) of 0.2, 0.6, and 1.0 wt.%
1 HeH, DaiH X, NgL H, WongK W, AuC T. Pd-, Pt-, and Rh-Loaded Ce0.6Zr0.35Y0.05O2 three-way catalysts: an investigate on performance and redox properties. Journal of Catalysis, 2002, 206(1): 1-13
doi: 10.1006/jcat.2001.3466
2 IkryannikovaL N, AksenovA A, MarkaryanG L, MuravévaG P, KostyukB G, KharlanovA N, LuninaE V. The redox treatments influence on the structure and properties of M2O3-CeO2-ZrO2 (M=Y, La) solid solutions. Applied Catalysis A, General, 2001, 210(1-2): 225-235
doi: 10.1016/S0926-860X(00)00811-5
3 HeoI, ChoungJ W, KimP S, NamI S, SongY I, InC B, YeoG K. The alteration of the performance of field-aged Pd-based TWCs towards CO and C3H6 oxidation. Applied Catalysis B: Environmental, 2009, 92(1-2): 114-125
doi: 10.1016/j.apcatb.2009.07.016
4 PapavasiliouA, TsetsekouA, MatsoukaV, KonsolakisM, YentekakisI V. An investigation of the role of Zr and La dopants into Ce1-x-yZrxLayOδ enriched γ-Al2O3 TWC washcoats. Applied Catalysis A: General, 2010, 382 (1, 30): 73-84
doi: 10.1016/j.apcata.2010.04.025
5 PapavasiliouA, TsetsekouA, MatsoukaV, KonsolakisM, YentekakisI V, BoukosN. Development of a Ce-Zr-La modified Pt/γ-Al2O3 TWCs washcoat: effect of synthesis procedure on catalytic behavior and thermal durability. Applied Catalysis B: Environmental, 2009, 90(1-2): 162-174
doi: 10.1016/j.apcatb.2009.03.006
6 PapavasiliouA, TsetsekouA, MatsoukaV, KonsolakisM, YentekakisbI V, BoukosN. Synergistic structural and surface promotion of monometallic (Pt) TWCs: effectiveness and thermal aging tolerance. Applied Catalysis B: Environmental, 2011, 106(1-2): 228-241
doi: 10.1016/j.apcatb.2011.05.030
7 CourtoisX, PerrichonV. Distinct roles of copper in bimetallic copper-rhodium three-way catalysts deposited on redox supports. Applied Catalysis B: Environmental, 2005, 57(1-15): 63-72
doi: 10.1016/j.apcatb.2004.10.010
8 JooS H, ParkJ Y, TsungC K, YamadaY, YangP D, SomorjaiG A. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nature Materials, 2009, 8(2): 126-131
doi: 10.1038/nmat2329 pmid: 19029893
9 LimB, JiangM J, CamargoP H C, ChoE C, TaoJ, LuX M, ZhuY M, XiaY N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science, 2009, 324(5932): 1302-1305
doi: 10.1126/science.1170377 pmid: 19443738
10 QiaoB T, WangA Q, YangX F, AllardL F, JiangZ, CuiY T, LiuJ Y, LiJ, ZhangT. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 2011, 3(8): 634-641
doi: 10.1038/nchem.1095 pmid: 21778984
11 LiuL C, GuanX, LiZ M, ZiX H, DaiH X, HeH. Supported bimetallic AuRh/γ-Al2O3 nanocatalyst for the selective catalytic reduction of NO by propylene. Applied Catalysis B: Environmental, 2009, 90(1-2): 1-9
doi: 10.1016/j.apcatb.2009.02.022
12 LiuL C, WeiT, ZiX H, HeH, DaiH X. Research on assembly of nano-Pd colloid and fabrication of supported Pd catalysts from the metal colloid. Catalysis Today, 2010, 153(3-4): 162-169
doi: 10.1016/j.cattod.2010.04.003
13 ChenG Z, XuC X, SongX Y, XuS L, DingY, SunS X. Template-free synthesis of single crystallinelike CeO2 hollow nanocubes. Crystal Growth & Design, 2008, 8(12): 4449-4453
doi: 10.1021/cg800288x
14 PanC S, ZhangD S, ShiL Y, FangJ H. Template-free synthesis, controlled conversion, and CO oxidation properties of CeO2 nanorods, nanotubes, nanowires, and nanocubes. European Journal of Inorganic Chemistry, 2008, 2008(15): 2429-2436
doi: 10.1002/ejic.200800047
15 YuR B, YanL, ZhengP, ChenJ, XingX R. Controlled synthesis of CeO2 flower-like and well-aligned nanorod hierarchical architectures by a phosphate-assisted hydrothermal route. Journal of Physical Chemistry C, 2008, 112(50): 19896-19900
doi: 10.1021/jp806092q
16 HanW Q, WuL J, ZhuY M. Formation and oxidation state of CeO(2-x) nanotubes. Journal of the American Chemical Society, 2005, 127(37): 12814-12815
doi: 10.1021/ja054533p pmid: 16159271
17 WangS R, ZhangJ, JiangJ Q, LiuR, ZhuB L, XuM, WangY, CaoJ, LiM, YuanZ, ZhangS, HuangW, WuS. Porous ceria hollow microspheres: synthesis and characterization. Microporous and Mesoporous Materials, 2009, 123(1-3): 349-353
doi: 10.1016/j.micromeso.2009.04.020
18 ZhongL S, HuJ S, CaoA M, SongW G, WanL J. 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chemistry of Materials, 2007, 19(7): 1648-1655
doi: 10.1021/cm062471b
19 SunC W, SunJ, XiaoG L, ZhangH R, QiuX P, LiH, ChenL Q. Mesoscale organization of nearly monodisperse flower like ceria microspheres. Journal of Physical Chemistry B, 2006, 110(27): 13445-13452
doi: 10.1021/jp062179r
20 LiH F, LuG Z, DaiQ G, WangY Q, GuoY, GuoY L. Hierarchical organization and catalytic activity of high-surface-area mesoporous ceria microspheres prepared via hydrothermal routes. Appied Materials and Interfaces, 2010, 2(3): 838-846
doi: 10.1021/am900829y pmid: 20356289
21 ZhouH P, WuH S, ShenJ, YinA X, SunL D, YanC H. Thermally stable Pt/CeO2 hetero-nanocomposites with high catalytic activity. Journal of the American Chemical Society, 2010, 132(14): 4998-4999
doi: 10.1021/ja101110m pmid: 20329793
22 RiouxR M, HsuB B, GrassM E, SongH, SomorjaiG A. Influence of particle size on reaction selectivity in cyclohexene hydrogenation and dehydrogenation over silica-supported mono-disperse Pt particles. Catalysis Letters, 2008, 126(1-2): 10-19
doi: 10.1007/s10562-008-9637-8
23 WeiY C, LiuJ, ZhaoZ, ChenY S, XuC M, DuanA J, JiangG Y, HeH. Highly active catalysts of gold nanoparticles supported on three-dimensionally ordered macroporous LaFeO3 for soot oxidation. Angewandte Chemie International Edition, 2011, 50(10): 2326-2329
pmid: 21351346
24 WeiY C, LiuJ, ZhaoZ, DuanA J, JiangG Y, XuC M, GaoJ S, HeH, WangX P. Three-dimensionally ordered macroporous Ce0.8Zr0.2O2-supported gold nanoparticles: synthesis with controllable size and super-catalytic performance for soot oxidation. Energy and Environmental Science, 2011, 4(8): 2959-2970
doi: 10.1039/c0ee00813c
25 KangS B, KwonH J, NamI S, SongY I, OhS H. Activity function for describing alteration of three way catalyst performance over palladium only three way catalysts by catalyst mileage. Industrial & Engineering Chemistry Research, 2011, 50(9): 5499-5509
doi: 10.1021/ie200083f
26 ConcepcionP, CormaA, SilvestreA. Chemoselective hydrogenation catalysts: Pt on meso-structured CeO2 nanoparticles embedded within ultrathin layers of SiO2 binder. Journal of American ChemistrySociety, 2004, 126(17): 5523-5532
doi: 10.1021/ja031768x
27 EllisA V, WilsonM A. Carbon exchange in hot alkaline degradation of glucose. Journal of Organic Chemistry, 2002, 67(24): 8469-8474
doi: 10.1021/jo025912t pmid: 12444627
28 SunC W, LiH, ZhangH R, WangZ X, ChenL Q. Controlled synthesis of CeO2 nanorods by a solvothermal method. Nanotechnology, 2005, 16(9): 1454-1463
doi: 10.1088/0957-4484/16/9/006
29 TerribileD, TrovarelliA, LlorcaJ, LeitenburgC D, DolcettiG. The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route. Journal of Catalysis, 1998, 178(1): 299-308
doi: 10.1006/jcat.1998.2152
30 YangB Y, MontgomeryR. Alkaline degradation of glucose: effect of initial concentration of reactants. Carbohydrate Research, 1996, 280(1): 27-45
doi: 10.1016/0008-6215(95)00294-4
31 HinokumaS, FujiiH, OkamotoM, IkeueK, MachidaM. Metallic Pd nanoparticles formed by Pd-O-Ce interaction: a reason for sintering induced activation for CO oxidation. Chemistry of Materials, 2010, 22(22): 6183-6190
doi: 10.1021/cm102355x
32 ShinjohH, HatanakaM, NagaiY, TanabeT, TakahashiN, YoshidaT, MiyakeY. Suppression of noble metal sintering based on the support anchoring effect and its application in automotive three way catalysis. Topics in Catalysis, 2009, 52(13-20): 1967-1971
doi: 10.1007/s11244-009-9371-5
33 NagaiY, HirabayashiT, DohmaeK, TakagiN, MinamiT, ShinjohH, MatsumotoS. Sintering inhibition mechanism of platinum supported on ceria-based oxideand Pt-oxide-support interaction. Journal of Catalysis, 2006, 242(1): 103-109
doi: 10.1016/j.jcat.2006.06.002
34 ZimmerP, TschöpeA, BirringerR. Temperature programmed reaction spectroscopy of ceria and Cu/Ceria supported oxide catalyst. Journal of Catalysis, 2002, 205(2): 339-345
doi: 10.1006/jcat.2001.3461
35 Silvestre-AlberoJ, Rodrı?guez-ReinosoF, Sepúlveda-EscribanoA. Improved metal-support interaction in Pt/CeO2-SiO2 catalysts after zinc addition. Journal of Catalysis, 2002, 210(1): 127-136
doi: 10.1006/jcat.2002.3670
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed