Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (5) : 797-804    https://doi.org/10.1007/s11783-013-0597-x
RESEARCH ARTICLE
Concept and application of anaerobic suspended granular sludge bed (SGSB) reactor for wastewater treatment
Mingxia ZHENG1,Zhong YAN2,Jiane ZUO1,Kaijun WANG1,*()
1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
2. Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
 Download: PDF(814 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bed expansion serves an important function in the design and operation of an upflow anaerobic reactor. An analysis of the flow pattern of expanded granular sludge bed (EGSB) reactors shows that most EGSB reactors do not behave as expanded bed reactors, as is widely perceived. Rather, these reactors behave as fluidized bed reactors based on the classic chemical reactor theory. In this paper, four bed expansion modes, divided as static bed, expanded bed, suspended bed, and fluidized bed, for bioreactors are proposed. A high-rate anaerobic suspended granular sludge bed (SGSB) reactor was then developed. The SGSB reactor is an upflow anaerobic reactor, and its expansion degree can be easily controlled within a range to maintain the suspended status of the sludge bed by controlling upflow velocity. The results of the full-scale reactor confirmed that the use of SGSB reactors is advantageous. The full-scale SGSB reactor runs stably and achieves high COD removal efficiency (about 90%) at high loading rates (average 40 kg-COD·m-3·d-1, maximum to 52 kg-COD·m-3·d-1) based on the SGSB theory, and its expansion degree is between 22% and 37%.

Keywords expansion characteristic      high-rate bioreactor      anaerobic suspended granular sludge bed      expanded granular sludge bed reactor     
Corresponding Author(s): Kaijun WANG   
Issue Date: 20 June 2014
 Cite this article:   
Mingxia ZHENG,Zhong YAN,Jiane ZUO, et al. Concept and application of anaerobic suspended granular sludge bed (SGSB) reactor for wastewater treatment[J]. Front.Environ.Sci.Eng., 2014, 8(5): 797-804.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0597-x
https://academic.hep.com.cn/fese/EN/Y2014/V8/I5/797
operational stageexpanded-bed stagesuspended-bed stage
ABCD
operational time/d1–67–2324–9394–154
CODinfluent /(mg·L-1)500050005000–100006000–10000
Inflow/(L·h-1)0.5–0.60.7–1.60.8–1.81.4–1.7
recirculation /(L·h-1)09.4–11.07.03.5–4.4
recirculation ratio05.9–8.83.8–8.42.1–3.2
OLR /(kg-COD·m-3·d-1)6.0–8.010.0–23.013.0–26.026.0–46.7
hydraulic retention time (HRT) /h14.0–15.75.0–11.04.4–9.74.8–6.3
Tab.1  Operational parameters of the laboratory-scale EGSB-type reactor
operational stagestartup and moderate load (A)high load(B)ultra-high load (C)second startup(D)high load (E)
operational time/d1–44(44)45–197(153)198–226(28)259–272(14)273–364(91)
CODinfluent /(mg·L-1)40554300514342705530
inflow /(m3·h-1)15–828080–9633–8685
recirculation /(m3·h-1)0–150000
OLR /(kg-COD·m-3·d-1)8.0–25.030.1(average)40.2(average)10.0–34.038.3(average)
HRT/h4.1–18.03.42.9–3.23.2–8.33.2
Tab.2  Operational parameters of the full-scale EGSB reactor
Fig.1  Volumetric loading rate and COD removal efficiency of anaerobic granular reactor
reactor volume/m3OLR/(kg COD·m-3·d-1)Vup /(m·h-1)gas velocity/(m·h-1)total upward velocity /(m·h-1)
pharmacy(the Netherlands)4 × 290307.54.512.0
bread yeast(France)2 × 9544/2810.58.0–4.014.5–18.5
bread yeast(Germany)95408.04.012.0
brewery(the Netherlands)780195.52.78.2
chemical Engineering(the Netherlands)275106.33.19.4
Tab.3  Operational conditions of the EGSB reactors abroad [26,27]
Fig.2  Relationship between bed pressure drop and fluid upward velocity
Fig.3  Sketch map of the reactor flow pattern: (a) static bed, (b) expanded bed, (c) suspended bed, (d) fluidized bed
Fig.4  Performance of the full-scale SGSB reactor
operational stagestartup and moderate load (A)high load(B)ultra-high load (C)second startup (D)high load(E)
operational time/d1–44(44)45–197(153)198–226(28)259–272(14)273–364(91)
OLR /(kg-COD·m-3·d-1)8–2530(average)40(average)10–3438(average)
Vup /(m·h-1)3.06.58.5naa)na
average COD removal efficiency/%84.188.389.689.790.1
sludge amount/t2.1–6.76.7–19.019.013.2–15.315.3
expansion degree/%22.230.236.9nana
Tab.4  Operational conditions of the full-scale SGSB
1 LettingaG,Van VelsonA F M, HobmaS W, de ZeeuwW, KlapwijkA. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology and Bioengineering, 1980, 22(4): 699–734
doi: 10.1002/bit.260220402
2 de ManA W A, GrinP C, RoersmaR E, GrolleK C F, LettingaG. Anaerobic treatment of municipal wastewater at low temperatures. In: Proceedings of EWPCA Water Treatment Conference: Anaerobic Treatment, a Grown-up Technology 1986, Amsterdam , The Netherlands. Schiedam: Industrial Presentations (Europe) B.V., 1986, 451–466
3 van der LastA R M, LettingaG. Anaerobic treatment of domestic sewage under moderate climatic (Dutch) conditions using upflow reactors at increased superficial velocities. Water Science and Technology, 1992, 25(7): 167–178
4 FrankinR J. Full-scale experiences with anaerobic treatment of industrial wastewater. Water Science and Technology, 2001, 44(8): 1–6
pmid: 11730123
5 LettingaG, RoersmaR, GrinP. Anaerobic treatment of raw domestic sewage at ambient temperatures using a granular bed UASB reactor. Biotechnology and Bioengineering, 1983, 25(7): 1701–1723
doi: 10.1002/bit.260250703 pmid: 18551476
6 SayedS K I. Anaerobic treatment of slaughterhouse wastewater using the UASB process. Dissertation for the Doctoral Degree. Wageningen, The Netherlands: Wageningen University, 1987
7 RinzemaA. Anaerobic treatment of wastewater with high concentrations of lipid or sulfate. Dissertation for the Doctoral Degree. Wageningen, The Netherlands: Wageningen Agricultural University, 1988
8 KatoM T, FieldJ A, VersteegP, LettingaG. Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters. Biotechnology and Bioengineering, 1994, 44(4): 469–479
doi: 10.1002/bit.260440410 pmid: 18618781
9 ZoutbergG R, FrankinR. Anaerobic treatment of chemical and brewery waste water with a new type of anaerobic reactor; the biobed EGSB reactor. Water Science and Technology, 1996, 34(5–6): 375–381
doi: 10.1016/0273-1223(96)00668-3
10 FranklinR J, KoevoetsW A A, van GilsW M A, van der PasA. Application of the BIOBED upflow fluidized bed process for anaerobic wastewater treatment. Water Science and Technology, 1992, 25(7): 373–382
11 JeisonD, ChamyR. Comparison of the behaviour of expanded granular sludge bed (EGSB) and upflow anaerobic sludge blanket (UASB) reactors in dilute and concentrated wastewater treatment. Water Science and Technology, 1999, 40(8): 91–97
doi: 10.1016/S0273-1223(99)00613-7
12 DaiR H, LiuY, LiuX, ZhangX D, ZengC Y, LiL. Investigation of a sewage-integrated technology combining an expanded granular sludge bed (EGSB) and an electrochemical reactor in a pilot-scale plant. Journal of Hazardous Materials, 2011, 192(3): 1161–1170
doi: 10.1016/j.jhazmat.2011.06.028 pmid: 21741765
13 ChuL B, YangF L, ZhangX W. Anaerobic treatment of domestic wastewater in a membrane-coupled expended granular sludge bed (EGSB) reactor under moderate to low temperature. Process Biochemistry (Barking, London, England), 2005, 40(3): 1063–1070
doi: 10.1016/j.procbio.2004.03.010
14 KatoM T, FieldJ A, LettingaG. The anaerobic treatment of low strength wastewaters in UASB and EGSB reactors. Water Science and Technology, 1997, 36(6): 375–382
doi: 10.1016/S0273-1223(97)00545-3
15 FangC, BoeK, AngelidakiI. Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. Bioresource Technology, 2011, 102(10): 5734–5741
doi: 10.1016/j.biortech.2011.03.013 pmid: 21450459
16 SeghezzoL, ZeemanG, van LierJ B, HamelersH V M, LettingaG. A review: the anaerobic treatment of sewage in UASB and EGSB reactors. Bioresource Technology, 1998, 65(3): 175–190
doi: 10.1016/S0960-8524(98)00046-7
17 PereboomJ H F. Strength characterisation of microbial granules. Water Science and Technology, 1997, 36(6–7): 141–148
doi: 10.1016/S0273-1223(97)00517-9
18 NicolellaC, van LoosdrechtM M C, Di FeliceR, RovattiM. Terminal settling velocity and bed-expansion characteristics of biofilm-coated particles. Biotechnology and Bioengineering, 1999, 62(1): 62–70
doi: 10.1002/(SICI)1097-0290(19990105)62:1<62::AID-BIT8>3.0.CO;2-U pmid: 10099514
19 PeñaM R, MaraD D, AvellaG P. Dispersion and treatment performance analysis of an UASB reactor under different hydraulic loading rates. Water Research, 2006, 40(3): 445–452
doi: 10.1016/j.watres.2005.11.021 pmid: 16405944
20 ZhengM X, WangK J, ZuoJ E, YanZ, FangH, YuJ W. Flow pattern analysis of a full-scale expanded granular sludge bed-type reactor under different organic loading rates. Bioresource Technology, 2012, 107: 33–40
doi: 10.1016/j.biortech.2011.11.102 pmid: 22248799
21 GuiotS R, ArcandY, ChavarieC. Advantages of fluidization on granule size and activity development in upflow anaerobic sludge bed reactors. Water Science and Technology, 1992, 26(3–4): 897–906
22 DinsdaleR M, HawkesF R, HawkesD L. Anaerobic digestion of short chain organic acids in an expanded granular sludge bed reactor. Water Research, 2000, 34(9): 2433–2438
doi: 10.1016/S0043-1354(99)00430-3
23 ChenM H. Principles of Chemical Engineering. Beijing: Chemical Industry Press, 1985 (in Chinese)
24 APHA, AWWA, WPCF. Standard Methods for the Examination of Water and Wastewater, 18th ed. Washington, DC: American Public Health Association,1992
25 LiuY H, HeY L, YangS C, AnC J. Studies on the expansion characteristics of the granular bed present in EGSB bioreactors. Water SA, 2006, 32(4): 555–560
26 WangK J.The application of anaerobic internal circulation reactor. Water and Wastewater Engineering,1996, 22(11): 54–56(in Chinese)
27 WangK J, WangX H, KeJ M, WuB, ShenL X. Present state and perspectives of anaerobic treatment technology. China Biogas, 1999, 17(4): 14–17 (in Chinese)
doi: 10.1007/BF02883032
28 LiuY H, HeY L, LiY Z. The settling characteristics and terminal velocity of granular sludge in UASB reactor. Acta Scientiae Circum-stantiae, 2005, 25(2): 176–179
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed