Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2014, Vol. 8 Issue (1) : 128-136    https://doi.org/10.1007/s11783-013-0598-9
RESEARCH ARTICLE
Short-term prediction of influent flow rate and ammonia concentration in municipal wastewater treatment plants
Shuai MA1, Siyu ZENG1, Xin DONG1, Jining CHEN1(), Gustaf OLSSON2
1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; 2. Department of Industrial Electrical Engineering and Automation, Lund University, Lund SE-22100, Sweden
 Download: PDF(385 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The prediction of the influent load is of great importance for the improvement of the control system to a large wastewater treatment plant. A systematic data analysis method is presented in this paper in order to estimate and predict the periodicity of the influent flow rate and ammonia (NH3) concentrations: 1) data filtering using wavelet decomposition and reconstruction; 2) typical cycle identification using power spectrum density analysis; 3) fitting and prediction model establishment based on an autoregressive model. To give meaningful information for feedforward control systems, predictions in different time scales are tested to compare the corresponding predicting accuracy. Considering the influence of the rainfalls, a linear fitting model is derived to estimate the relationship between flow rate trend and rain events. Measurements used to support coefficient fitting and model testing are acquired from two municipal wastewater treatment plants in China. The results show that 1) for both of the two plants, the periodicity affects the flow rate and NH3 concentrations in different cycles (especially cycles longer than 1 day); 2) when the flow rate and NH3 concentrations present an obvious periodicity, the decreasing of prediction accuracy is not distinct with increasing of the prediction time scales; 3) the periodicity influence is larger than rainfalls; 4) the rainfalls will make the periodicity of flow rate less obvious in intensive rainy periods.

Keywords influent load prediction      wavelet de-noising      power spectrum density      autoregressive model      time-frequency analysis      wastewater treatment     
Corresponding Author(s): CHEN Jining,Email:jchen1@tsinghua.edu.cn   
Issue Date: 01 February 2014
 Cite this article:   
Shuai MA,Siyu ZENG,Xin DONG, et al. Short-term prediction of influent flow rate and ammonia concentration in municipal wastewater treatment plants[J]. Front Envir Sci Eng, 2014, 8(1): 128-136.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0598-9
https://academic.hep.com.cn/fese/EN/Y2014/V8/I1/128
Fig.1  PSD curve (a) and contour map of spectrogram time-frequency distribution (b) of the flow rate of XHM. The peak of PSD at 0.041 corresponds to daily (24 h) cycles, while the peak at 0.082 corresponds to a 12 h cycle. The two cycles of 12 and 24 h are clearly indicated in the contour map, while the gaps in the two cycles of the contour maps are caused by the intensive rainfalls, which destroyed the periodicity, during days 40 to 61 (176th to 197th day of the entire year)
a1ta2tb1tunit of b1tRIc)b2t
meana)(stdb))/XHM (flow rate)0.29(0.09)0.41(0.10)6.0×102(0.9×102)m3·mm-10.037.1×103(0.7×103)
mean(std)/KM (flow rate)0.13(0.02)0.67(0.01)1.4×103 (0.07×103)m3·mm-10.0540×103(8×103)
mean(std)/XHM (NH3)0.45(0.11)0.33(0.12)-8.1×10-2(0.3×10-2)mg?d·(L?mm)-10.046.2(1.4)
mean(std)/KM (NH3)0.33(0.04)0.46(0.04)-7.0×10-2(1.8×10-2)mg?d·(L?mm)-10.053.8(1.3)
Tab.1  Coefficients for different prediction horizons for the influent flow rates and the ammonia concentrations in the XHM and KM plants
Fig.2  Relative error of influent flow rate prediction of XHM plant for different prediction horizons
Fig.3  PSD curve (a) and predicted data of the flow rate (b) of Kunming plant #5. The largest peak of PSD appears at the frequency of 0.03 d, corresponding to the cycle of 33 days. The second peak appears at 0.018 d (55 days). Smaller peaks appear at the frequencies of 0.044 d (23 days) and 0.094 d (11 days)
Fig.4  PSD-frequency curve of NH concentrations in the XHM plant. 455 day data (a) are based on daily measurement, while 2 week data (b) are sampled once every hour
Fig.5  Predicted results of NH concentration of XHM plant (a) and Kunming plant #5 (b)
1 Olsson G. ICA and me—a subjective review. Water Research , 2012, 46(6): 1585-1624
doi: 10.1016/j.watres.2011.12.054 pmid:22284982
2 Olsson G, Jeppsson U. Plant-wide control: dream, necessity or reality? Water Science & Technology , 2006, 53(3): 121-129
doi: 10.2166/wst.2006.083 pmid:16605024
3 Villarroel Walker R, Beck M B, Hall J W. Water—and nutrient and energy-systems in urbanizing watersheds. Frontier of Environmental Science & Engineering , 2012, 6(5): 596-611
4 Olsson G, Aspegren H, Nielsen M K. Operation and control of wastewater treatment—a Scandinavianperspective over 20 years. Water Science & Technology , 1998, 37(12): 1-13
doi: 10.1016/S0273-1223(98)00364-3
5 Jeppsson U, Alex J, Pons M N, Spanjers H, Vanrolleghem P A. Status and future trends of ICA in wastewater treatment—a European perspective. Water Science & Technology , 2002, 45(4-5): 485-494
pmid:11936671
6 Ma S, Zeng S Y, Chen J N. A survey on instrumentation, control and automation of WWTPs in Taihu Lake Basin, China. In: Proceedings of 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2010), Chengdu . Piscataway: IEEE, 2010, 1-4
7 Li H, Zhang Y, Yang M, Kamagata Y. Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional activated sludge system. Frontier of Environmental Science & Engineering , 2013, 7(1): 43-48
8 ?mand L, Olsson G, Carlsson B. Aeration control — a review. Water Science & Technology , 2013, 67(11): 2374-2398
doi: 10.2166/wst.2013.139 pmid:23752368
9 Peng Z X, Peng Y Z, Yu Z b, Liu X L, Li X L, Wang R D. Control of sludge settleability and nitrogen removal under low dissolved oxygen condition. Frontier of Environmental Science & Engineering , 2012, 6(6): 884-891
10 Yu R F. Feed-forward dose control of wastewater chlorination using on-line pH and ORP titration. Chemosphere , 2004, 56(10): 973-980
doi: 10.1016/j.chemosphere.2004.03.015 pmid:15268964
11 Schütze M, Campisano A, Colas H, Schilling W, Vanrolleghem P A. Real time control of urban wastewater systems—where do we stand today? Journal of Hydrology (Amsterdam) , 2004, 299(3-4): 335-348
12 Shen W, Chen X, Pons M N, Corriou J P. Model predictive control for wastewater treatment process with feedforward compensation. Chemical Engineering Journal , 2009, 155(1-2): 161-174
doi: 10.1016/j.cej.2009.07.039
13 Stare A, Hvala N, Vre?ko D. Modeling, identification, and validation of models for predictive ammonia control in a wastewater treatment plant—a case study. ISA Transactions , 2006, 45(2): 159-174
doi: 10.1016/S0019-0578(07)60187-6 pmid:16649563
14 Corriou J P, Pons M N. Model predictive control of wastewater treatment plants: application to the BSM1 benchmark. In: Barbosa-Póvoa A, Matos H, eds. Computer Aided Chemical Engineering . Lisbon: Elsevier, 2004, 625-630
15 Stare A, Vre?ko D, Hvala N, Strm?nik S. Comparison of control strategies for nitrogen removal in an activated sludge process in terms of operating costs: a simulation study. Water Research , 2007, 41(9): 2004-2014
doi: 10.1016/j.watres.2007.01.029 pmid:17346768
16 Young P. Data-based mechanistic modelling of environmental, ecological, economic and engineering systems. Environmental Modelling & Software , 1998, 13(2): 105-122
doi: 10.1016/S1364-8152(98)00011-5
17 Taylor C J, Pedregal D J, Young P C, Tych W. Environmental time series analysis and forecasting with the Captain toolbox. Environmental Modelling & Software , 2007, 22(6): 797-814
doi: 10.1016/j.envsoft.2006.03.002
18 Yong M, Yongzhen P, Jeppsson U. Dynamic evaluation of integrated control strategies for enhanced nitrogen removal in activated sludge processes. Control Engineering Practice , 2006, 14(11): 1269-1278
doi: 10.1016/j.conengprac.2005.06.018
19 Han H G, Qiao J F, Chen Q L. Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network. Control Engineering Practice , 2012, 20(4): 465-476
doi: 10.1016/j.conengprac.2012.01.001
20 Vrecko D, Hvala N, Stare A, Burica O, Strazar M, Levstek M, Cerar P, Podbevsek S. Improvement of ammonia removal in activated sludge process with feedforward-feedback aeration controllers. Water Science & Technology , 2006, 53(4-5): 125-132
doi: 10.2166/wst.2006.098 pmid:16722062
21 Olsson G, Newell B. Wastewater Treatment Systems. Modelling, Diagnosis and Control . London: IWA Publishing, 1999
22 Bai H, Zeng S Y, Dong X, Chen J N. Substance flow analysis for an urban drainage system of a representative hypothetical city in China. Frontier of Environmental Science & Engineering , 2013, 7(5): 746-755
23 Gernaey K V, Flores-Alsina X, Rosen C, Benedetti L, Jeppsson U. Dynamic influent pollutant disturbance scenario generation using a phenomenological modelling approach. Environmental Modelling & Software , 2011, 26(11): 1255-1267
doi: 10.1016/j.envsoft.2011.06.001
24 Shen T G, Shi H, Shi H, Jing H, Xiong H. Feedforward control for nitrogen removal in a pilot-scale anaerobic-anoxic-oxic plant for municipal wastewater treatment. Frontiers of Environmental Science & Engineering in China , 2011, 5(1): 130-139
doi: 10.1007/s11783-010-0266-2
25 Li L Q, Shan B Q, Yin C Q. Stormwater runoff pollution loads from an urban catchment with rainy climate in China. Frontier of Environmental Science & Engineering , 2012, 6(5): 672-677
26 El-Din A G, Smith D W. A neural network model to predict the wastewater inflow incorporating rainfall events. Water Research , 2002, 36(5): 1115-1126
doi: 10.1016/S0043-1354(01)00287-1 pmid:11902768
27 Carstensen J, Nielsen M K, Strandb?k H. Prediction of hydraulic load for urban storm control of a municipal WWT plant. Water Science & Technology , 1998, 37(12): 363-370
doi: 10.1016/S0273-1223(98)00355-2
28 Young P. Data-based mechanistic modelling, generalised sensitivity and dominant mode analysis. Computer Physics Communications , 1999, 117(1-2): 113-129
doi: 10.1016/S0010-4655(98)00168-4
29 Fernandez F J, Seco A, Ferrer J, Rodrigo M A. Use of neurofuzzy networks to improve wastewater flow-rate forecasting. Environmental Modelling & Software , 2009, 24(6): 686-693
doi: 10.1016/j.envsoft.2008.10.010
30 Hanbay D, Turkoglu I, Demir Y. Prediction of wastewater treatment plant performance based on wavelet packet decomposition and neural networks. Expert Systems with Applications , 2008, 34(2): 1038-1043
doi: 10.1016/j.eswa.2006.10.030
31 Daubechies I. Ten Lectures on Wavelet. Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 1992
32 Dai Y. The time-frequency analysis approach of electric noise based on the wavelet transform. Solid-State Electronics , 2000, 44(12): 2147-2153
doi: 10.1016/S0038-1101(00)00163-5
33 Birgé L. Statistical estimation with model selection. Indagationes Mathematicae , 2006, 17(4): 497-537
doi: 10.1016/S0019-3577(07)00004-3
34 Birgé L, Massart P. From model selection to adaptive estimation. In: Pollard DTorgersen EYang G Leds. Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics . New York: Springer-Verlag, 1997, 55-87
35 Wu Z Y, Zhou H H. Model selection and sharp asymptotic minimaxity. Probability Theory and Related Fields , 2013, 156(1-2): 165-191
[1] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[2] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[3] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[4] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[5] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
[6] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[7] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[8] Tiezheng Tong, Kenneth H. Carlson, Cristian A. Robbins, Zuoyou Zhang, Xuewei Du. Membrane-based treatment of shale oil and gas wastewater: The current state of knowledge[J]. Front. Environ. Sci. Eng., 2019, 13(4): 63-.
[9] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
[10] Huang Huang, Jie Wu, Jian Ye, Tingjin Ye, Jia Deng, Yongmei Liang, Wei Liu. Occurrence, removal, and environmental risks of pharmaceuticals in wastewater treatment plants in south China[J]. Front. Environ. Sci. Eng., 2018, 12(6): 7-.
[11] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[12] Akshay Jain, Zhen He. “NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions[J]. Front. Environ. Sci. Eng., 2018, 12(4): 1-.
[13] Gang Guo, Yayi Wang, Tianwei Hao, Di Wu, Guang-Hao Chen. Enzymatic nitrous oxide emissions from wastewater treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 10-.
[14] Maocong Hu, Yin Liu, Zhenhua Yao, Liping Ma, Xianqin Wang. Catalytic reduction for water treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 3-.
[15] Ming Zeng, Ping Li, Nan Wu, Xiaofang Li, Chang Wang. Preparation and characterization of a novel microorganism embedding material for simultaneous nitrification and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 15-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed