Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    0, Vol. Issue () : 719-728    https://doi.org/10.1007/s11783-013-0600-6
RESEARCH ARTICLE
Current status and developing trends of the contents of heavy metals in sewage sludges in China
Jun YANG1,Mei LEI1,Tongbin CHEN1,*(),Ding GAO1,Guodi ZHENG1,Guanghui GUO1,Duujong LEE2
1. Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2. Department of Chemical Engineering, Taiwan University, Taipei 106, China
 Download: PDF(1603 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

It is essential to determine the heavy metal concentrations in sewage sludge to select appropriate disposal methods. We conducted a national survey of heavy metal concentrations of sewage sludge samples from 107 municipal sewage treatment plants located in 48 cities covering the 31 provinces and autonomous regions, as well as Hong Kong, Macao and Taiwan by Xinjiang Production and Construction Corps in 2006, and identified the temporal trends of heavy metal contents in sewage sludge by comparison with surveys conducted in 1994–2001. In 2006, the average concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in sewage sludge were 20.2, 1.97, 93.1, 218.8, 2.13, 48.7, 72.3, and 1058 mg·kg-1, respectively. Because of the decreased discharge of heavy metals into industrial wastewater in China and the increasingly stringent regulations governing the content of industrial wastes entering sewers, the average concentrations of Cd, Cr, Cu, Hg, Ni, Pb, and Zn have decreased by 32.3%, 49.7%, 54.9%, 25.0%, 37.2%, 44.8%, and 27.0%, respectively, during the past 12 years. The concentrations of Cd, Cr, Cu, Ni, and Zn in the samples exceeded the heavy metal limits of the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant in China (GB 18918-2002) by 6.5%, 3.7%, 6.5%, 6.5%, and 11.2%, respectively. From these results, 85 of the 107 municipal sludges analyzed would be considered suitable for land application.

Keywords sewage sludge      heavy metals      temporal variation      national survey      environmental policies     
Corresponding Author(s): Tongbin CHEN   
Issue Date: 20 June 2014
 Cite this article:   
Jun YANG,Mei LEI,Tongbin CHEN, et al. Current status and developing trends of the contents of heavy metals in sewage sludges in China[J]. Front.Environ.Sci.Eng., 0, (): 719-728.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0600-6
https://academic.hep.com.cn/fese/EN/Y0/V/I/719
Fig.1  Locations of wastewater treatment plants in China from which sewage sludge samples were collected
Fig.2  Distribution frequency of heavy metal concentrations in municipal sewage sludge in China: (a) As, (b) Cd, (c) Cr, (d) Cu, (e) Hg, (f) Ni, (g) Pb, and (h) Zn
heavy metalconcentration /(mg·kg-1)exceeded standard value a)
min5%median95%maxarithmetic meanBox-Cox meanS.D
As0.784.7019.8852.80268.7425.2320.2026.760.9%
Cd0.040.591.7124.3642.733.881.976.976.5%
Cr20.028.085.3728.06365.0259.293.1714.53.7%
Cu51.092.0223.01881.29592.0499.1218.81131.36.5%
Hg0.040.062.181.5117.493.182.133.130.9%
Ni16.422.546.2247.26206.4166.948.7718.96.5%
Pb3.612.583.6246.71022.1112.272.3133.70.9%
Zn217459102583043009820881058382011.2%
Tab.1  Concentrations of heavy metals in municipal sewage sludge in China (n = 107)
Fig.3  Spatial distribution of heavy metal concentrations in municipal sewage sludge in China. Class A: applicable crops include vegetables, food crops, oil crops, fruit crops, grass crops, fiber crops; Class B: applicable crops include oil crops, fruit crops, grass crops, fiber crops: (a) As, (b) Cd, (c) Cr, (d) Cu, (e) Hg, (f) Ni, (g) Pb, and (h) Zn
AsCdCrCuNiHgPbZn
As10.474**0.1570.234*0.1150.303**0.273**0.318**
Cd10.0810.2430.0910.231*0.403**0.321**
Cr10.591**0.591**-0.1290.334**0.554**
Cu10.677**-0.0710.371**0.535**
Ni1-0.1210.251**0.367**
Hg1-0.0630.101
Pb10.442**
Zn1
Tab.2  Correlation coefficients between heavy metal concentrations in sewage sludge a)
componentextracted sums of squared loadingsrotated sums of squared loadings
total% of variancecumulative %total% of variancecumulative %
13.33541.7041.702.30128.8028.80
21.63020.4162.111.57219.7148.51
30.83010.4272.531.39617.5166.02
40.5526.9179.441.07113.279.44
Tab.3  Total variances and component matrixes for heavy metals in sewage sludge
heavy metalcomponent matrixrotated component matrixa)
12341234
As0.5440.593-0.027-0.3750.1570.8440.0690.217
Cd0.5700.542-0.303-0.1880.0410.7870.3450.071
Cr0.713-0.4180.1280.1120.754-0.0450.372-0.057
Cu0.797-0.2400.182-0.1760.8070.2570.200-0.024
Ni0.686-0.4420.318-0.2070.8950.0610.043-0.068
Hg0.0660.7350.5680.250-0.1110.213-0.0380.934
Pb0.6820.014-0.5110.2880.1960.2820.811-0.183
Zn0.7940.1300.0550.3800.4550.2090.6600.327
Tab.4  component matrixes
Fig.4  Temporal variation of the concentration of heavy metals in municipal sewage sludge in China
locationNo. of wastewater treatment plantsyear of investigationconcentration/(mg·kg-1 DW)reference
AsCdCrCuNiHgPbZn
Volos, Greece12009-4.8±2.5-255±7457±5.8-315±5.31712±279[2]
Cairo, Egypt52007-2.9±0.59224±106223±59.047.0±10.5--1037±564[24]
Manhattan, Kansas, USA12007-2.04-40116.0-41.11010[25]
Ankara, Turkey12004---21575.8-180436[26]
Bedok, Singapore12004-<1694±1021491±533314±111-146±241840±1030[27]
Lublin, Poland.420042.2±0.565.9±44.7221±6754.2±67.2-45.9±9.91186±157[28]
Rio de Janeiro, Brazil, Brazil22004-2.1±1.024.4±21249±3244±466.1±2.681±421029±505[29]
Thessaloniki, Greece420038.9±0.94.4±0.6104±8226±38--83±151034±52[30]
Denmark1920028.001.3021.024320.01.1050.0700[31]
Salamanca, Spain72000–2002-2.3±0.327.8±7.7130±4425.3±5.1-110±68976±284[32]
Enköping, Sweden12001-1.8027.077021.0-36.0875[33]
Padova, Italy120002.1±0.3370±4019±28.0±272±71500±90[34]
China104200620.22.0193.121948.72.1372.31058this study
Tab.5  Comparison of heavy metal concentrations in municipal sewage sludge from different countries
1 National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistics Press, 2011. Available online at http://www.stats.gov.cn/tjsj/ndsj/2011/indexeh.htm (accessed <month>December</month><day>29</day>, 2013)
2 AntoniadisV, AllowayB J. The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils. Environmental Pollution, 2002, 117(3): 515–521
doi: 10.1016/S0269-7491(01)00172-5 pmid: 11911533
3 BenbrahimM, DenaixL, ThomasA L, BaletJ, CarnusJ M. Metal concentrations in edible mushrooms following municipal sludge application on forest land. Environmental Pollution, 2006, 144(3): 847–854
doi: 10.1016/j.envpol.2006.02.014 pmid: 16616804
4 ChaudriA, McGrathS, GibbsP, ChambersB, Carlton-SmithC, GodleyA, BaconJ, CampbellC, AitkenM. Cadmium availability to wheat grain in soils treated with sewage sludge or metal salts. Chemosphere, 2007, 66(8): 1415–1423
doi: 10.1016/j.chemosphere.2006.09.068 pmid: 17109920
5 WuL H, ChengM M, LiZ, RenJ, ShenL B, WangS F, LuoY M, ChristieP. Major nutrients, heavy metals and PBDEs in soils after long-term sewage sludge application. Journal of Soils and Sediments, 2012, 12(4): 531–541
doi: 10.1007/s11368-012-0485-1
6 BhogalA, NicholsonF A, ChambersB J, ShepherdM A. Effects of past sewage sludge additions on heavy metal availability in light textured soils: implications for crop yields and metal uptakes. Environmental Pollution, 2003, 121(3): 413–423
doi: 10.1016/S0269-7491(02)00230-0 pmid: 12685769
7 OzcanS, TorA, AydinM E. Investigation on the levels of heavy metals, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in sewage sludge samples and ecotoxicological testing. Clean - Soil Air Water, 2013, 41(4): 411–418
doi: 10.1002/clen.201100187
8 SterrittR M, LesterJ N. Concentrations of heavy metals in forty sewage sludges in England. Water, Air, and Soil Pollution, 1980, 14(1): 125–131
doi: 10.1007/BF00291831
9 MummaR O, RaupachD C, WaldmanJ P, TongS S C, JacobsM L, BabishJ G, HotchkissJ H, WszolekP C, GutenmanW H, BacheC A, LiskD J. National survey of elements and other constituents in municipal sewage sludges. Archives of Environmental Contamination and Toxicology, 1984, 13(1): 75–83
doi: 10.1007/BF01055648
10 WangM J. Land application of sewage sludge in China. The Science of the Total Environment, 1997, 197(1–3): 149–160
doi: 10.1016/S0048-9697(97)05426-0 pmid: 9151437
11 ChenT B, HuangQ F, GaoD, ZhengY Q, WuJ F. Heavy metal concentrations and their decreasing treads in sewage sludges of China. Acta Scientiae Circumstantiae, 2003, 23(5): 561–569 (in Chinese)
12 Ministry of Environmental Protection of China.China Statistical Yearbook on Environment. Beijing: China Environmental Press, 2007, 557, 580, 586 (in Chinese)
13 Ministry of Housing and Urban-Rural Development of China. Discharge Standard for Municipal Wastewater. CJ 3082–1999. Beijing: Ministry of Housing and Urban-Rural Development of China, 1999
14 McGrathS P, LaneP W. An explanation for the apparent losses of metals in a long-term field experiment with sewage sludge. Environmental Pollution, 1989, 60(3–4): 235–256
doi: 10.1016/0269-7491(89)90107-3 pmid: 15092379
15 BoxG E P, CoxD R. An analysis of transformations. Journal of the Royal Statistical Society, Series B, 1964, 26(2): 211–252
16 LiX D, LeeS L, WongS C, ShiW, ThorntonI. The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environmental Pollution, 2004, 129(1): 113–124
doi: 10.1016/j.envpol.2003.09.030 pmid: 14749075
17 AelionC M, DavisH T, McDermottS, LawsonA B. Metal concentrations in rural topsoil in South Carolina: potential for human health impact. The Science of the Total Environment, 2008, 402(2–3): 149–156
doi: 10.1016/j.scitotenv.2008.04.043 pmid: 18538375
18 DavisH T, Marjorie AelionC, McDermottS, LawsonA B. Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation. Environmental Pollution, 2009, 157(8–9): 2378–2385
doi: 10.1016/j.envpol.2009.03.021 pmid: 19361902
19 SörmeL, LagerkvistR. Sources of heavy metals in urban wastewater in Stockholm. The Science of the Total Environment, 2002, 298(1–3): 131–145
doi: 10.1016/S0048-9697(02)00197-3 pmid: 12449334
20 OliverI W, McLaughlinM J, MerringtonG. Temporal trends of total and potentially available element concentrations in sewage biosolids: a comparison of biosolid surveys conducted 18 years apart. The Science of the Total Environment, 2005, 337(1–3): 139–145
doi: 10.1016/j.scitotenv.2004.07.003 pmid: 15626385
21 HarrisonR M, TillingR, Romero,M S C, HarradS, JarvisK. A study of trace metals and polycyclic aromatic hydrocarbons in the roadside environment. Atmospheric Environment, 2003, 37(17): 2391–2402
doi: 10.1016/S1352-2310(03)00122-5
22 BravoH A, TorresR J. The usefulness of air quality monitoring and air quality impact studies before the introduction of reformulated gasolines in developing countries Mexico City, a real case study. Atmospheric Environment, 2000, 34(3): 499–506
doi: 10.1016/S1352-2310(99)00382-9
23 US Geological Survey. 2003, 2007 Minerals Yearbook. Arsenic Statistics and Information. 2003, 2007. Available online at http://minerals.usgs.gov/minerals/pubs/commodity/arsenic/index.html#myb (accessed <month>February</month><day>26</day>, 2013)
24 LasheenM R, AmmarN S. Assessment of metals speciation in sewage sludge and stabilized sludge from different Wastewater Treatment Plants, Greater Cairo, Egypt. Journal of Hazardous Materials, 2009, 164(2–3): 740–749
doi: 10.1016/j.jhazmat.2008.08.068 pmid: 18845393
25 WahlaI H, KirkhamM B. Heavy metal displacement in salt-water-irrigated soil during phytoremediation. Environmental Pollution, 2008, 155(2): 271–283
doi: 10.1016/j.envpol.2007.11.020 pmid: 18180088
26 KizilkayaR, BayrakliB. Effects of N-enriched sewage sludge on soil enzyme activities. Applied Soil Ecology, 2005, 30(3): 192–202
doi: 10.1016/j.apsoil.2005.02.009
27 LimT T, ChuJ, GoiM H. Effects of cement on redistribution of trace metals and dissolution of organics in sewage sludge and its inorganic waste-amended products. Waste Management (New York, N.Y.), 2006, 26(11): 1294–1304
doi: 10.1016/j.wasman.2005.11.001 pmid: 16364627
28 OleszczukP. Phytotoxicity of municipal sewage sludge composts related to physico-chemical properties, PAHs and heavy metals. Ecotoxicology and Environmental Safety, 2008, 69(3): 496–505
doi: 10.1016/j.ecoenv.2007.04.006 pmid: 17532468
29 de Souza PereiraM, KuchB. Heavy metals, PCDD/F and PCB in sewage sludge samples from two wastewater treatment facilities in Rio de Janeiro State, Brazil. Chemosphere, 2005, 60(7): 844–853
doi: 10.1016/j.chemosphere.2005.01.079 pmid: 15992591
30 MantisI, VoutsaD, SamaraC. Assessment of the environmental hazard from municipal and industrial wastewater treatment sludge by employing chemical and biological methods. Ecotoxicology and Environmental Safety, 2005, 62(3): 397–407
doi: 10.1016/j.ecoenv.2004.12.010 pmid: 16216634
31 JensenJ, JepsenS E. The production, use and quality of sewage sludge in Denmark. Waste Management (New York, N.Y.), 2005, 25(3): 239–247
doi: 10.1016/j.wasman.2004.08.011 pmid: 15823740
32 García-DelgadoM, Rodríguez-CruzM S, LorenzoL F, ArienzoM, Sánchez-MartínM J.Seasonal and time variability of heavy metal content and of its chemical forms in sewage sludges from different wastewater treatment plants. The Science of the Total Environment, 2007, 382(1, 15): 82–92
doi: 10.1016/j.scitotenv.2007.04.009 pmid: 17532025
33 DimitriouI, ErikssonJ, AdlerA, AronssonP, VerwijstT. Fate of heavy metals after application of sewage sludge and wood-ash mixtures to short-rotation willow coppice. Environmental Pollution, 2006, 142(1): 160–169
doi: 10.1016/j.envpol.2005.09.001 pmid: 16278041
34 LazzariL, SperniL, BertinP, PavoniB. Correlation between inorganic (heavy metals) and organic (PCBs and PAHs) micropollutant concentrations during sewage sludge composting processes. Chemosphere, 2000, 41(3): 427–435
doi: 10.1016/S0045-6535(99)00289-1 pmid: 11057605
[1] Yating Wei, Dong Hu, Chengsong Ye, Heng Zhang, Haoran Li, Xin Yu. Drinking water quality & health risk assessment of secondary water supply systems in residential neighborhoods[J]. Front. Environ. Sci. Eng., 2024, 18(2): 18-.
[2] Xinwan Zhang, Guangyuan Meng, Jinwen Hu, Wanzi Xiao, Tong Li, Lehua Zhang, Peng Chen. Electroreduction of hexavalent chromium using a porous titanium flow-through electrode and intelligent prediction based on a back propagation neural network[J]. Front. Environ. Sci. Eng., 2023, 17(8): 97-.
[3] Haojun Lei, Kaisheng Yao, Bin Yang, Lingtian Xie, Guangguo Ying. Occurrence, spatial and seasonal variation, and environmental risk of pharmaceutically active compounds in the Pearl River basin, South China[J]. Front. Environ. Sci. Eng., 2023, 17(4): 46-.
[4] Qian Li, Zhaoping Zhong, Haoran Du, Xiang Zheng, Bo Zhang, Baosheng Jin. Co-pyrolysis of sludge and kaolin/zeolite in a rotary kiln: Analysis of stabilizing heavy metals[J]. Front. Environ. Sci. Eng., 2022, 16(7): 85-.
[5] Lihui Gao, Yijun Cao, Lizhang Wang, Shulei Li. A review on sustainable reuse applications of Fenton sludge during wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(6): 77-.
[6] Liang Cui, Ji Li, Xiangyun Gao, Biao Tian, Jiawen Zhang, Xiaonan Wang, Zhengtao Liu. Human health ambient water quality criteria for 13 heavy metals and health risk assessment in Taihu Lake[J]. Front. Environ. Sci. Eng., 2022, 16(4): 41-.
[7] Ziyue Yin, Qing Lin, Shaohui Xu. Using hydrochemical signatures to characterize the long-period evolution of groundwater information in the Dagu River Basin, China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 105-.
[8] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[9] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[10] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[11] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[12] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[13] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[14] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[15] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed