Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (4) : 570-579    https://doi.org/10.1007/s11783-013-0604-2
RESEARCH ARTICLE
Assessing the potential of crop residue recycling in China and technology options based on a bottom-up model
Lili QU,Tianzhu ZHANG(),Wei LU
Institute of Environmental Management and Policy, School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(390 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Crop residues are an important biomass, and are significant in the sustainable development of China. This paper uses the Grey-Markov modeling approach, the cost-benefit analysis method, and the constraint optimization method to establish the potential of crop residue recycling in China (CRRC) using a bottom-up analysis. Taking 2010 as the baseline year, the CRRC model is used to determine the quantity trends of crop residue resources, simulating the recycling potential and selecting key crop residue recycling technologies for operation between 2010 and 2030. The results illustrate that the total residue output from different crops will gradually increase to 1062 million tons in 2030. The proportion of crop residue for field burning is expected to decrease as a result of guidance and support from the government. Market mechanisms are also improving the development of the crop residue recycling industry. The economic benefit of crop residue recycling is expected to be worth 132 billion CNY in 2030 according to technology structure options. Key crop residue recycling technologies preferred such as liquefaction, amination, silo, co-firing straw power and composting will account for more than 85% of the total benefits.

Keywords China      crop residue      recycling potential      technology options     
Corresponding Author(s): Tianzhu ZHANG   
Issue Date: 11 June 2014
 Cite this article:   
Lili QU,Tianzhu ZHANG,Wei LU. Assessing the potential of crop residue recycling in China and technology options based on a bottom-up model[J]. Front.Environ.Sci.Eng., 2014, 8(4): 570-579.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0604-2
https://academic.hep.com.cn/fese/EN/Y2014/V8/I4/570
Fig.1  Structure of CRRC model
alternative usestechnologiesaverage benefitaverage costproducts pricecrop residues pricetransform index
power generationstraw pure combustion power generation (SPCP) [13]0.082 CNY·kg-10.518 CNY·kWh-10.350 CNY·kWh-10.30 CNY·kg-11.00 kWh·kg-1
co-firing straw power generation (CSP) [13]0.151 CNY·kg-10.121 CNY·kWh-10.350 CNY·kWh-10.32 CNY·kg-10.66 kWh·kg-1
straw gasification power generation (SGP)0.043 CNY·kg-10.522 CNY·kWh-10.350 CNY·kWh-10.30 CNY·kg-10.56 kWh·kg-1
biogas power generation (BP)0.010 CNY·kg-10.38 kWh·kg-1
heat generationstove combustion heat generation (SCH)0.003 CNY·kg-10.017 CNY·kg-10.020 CNY·kg-1
boiler combustion heat generation (BCH)0.008 CNY·kg-10.222 CNY·m-30.300 CNY·m-31.00 m3·kg-1
straw gasification heat generation (SGH)0.039 CNY·kg-10.234 CNY·m-30.200–0.300 CNY·m-30.20 CNY·kg-12.39 m3·kg-1
biogas heat generation (BH)0.098 CNY·kg-10.237 CNY·m-30.600 CNY·m-30.27 m3·kg-1
solidifications0.150 CNY·kg-10.190–0.220 CNY·kg-10.270–0.300 CNY·kg-10.18–0.25 CNY·kg-1
liquefaction1.855 CNY·kg-14.100–4.500 CNY·kg-14.780 CNY·kg-10.15 CNY·kg-10.15 kg·kg-1
manure productionmechanization returning to field (MDRF)0.003 CNY·kg-10.010 CNY·kg-10.013 CNY·kg-1
overlay planting returning to field (OPRF)0.046 CNY·kg-10.017 CNY·kg-10.063 CNY·kg-1
composting returning to field (CRF)0.184 CNY·kg-10.023 CNY·kg-10.207 CNY·kg-1
manure digested by livestock and ashes (MDLA)0.150 CNY·kg-10.015 CNY·kg-10.165 CNY·kg-1
forage productionsilo0.048 CNY·kg-10.022 CNY·kg-10.070 CNY·kg-10.04 CNY·kg-1
amination0.118 CNY·kg-10.282 CNY·kg-10.400 CNY·kg-10.02 CNY·kg-1
microbial straw silage (MSS)0.050 CNY·kg-10.160 CNY·kg-10.210 CNY·kg-10.04 CNY·kg-1
industrialraw material (IRM)productionstraw pulp (SP) [17,21]0.800 CNY·kg-12.700 CNY·kg-13.500 CNY·kg-10.40 CNY·kg-1
cultivation of edible mushrooms with straw (SCM)0.500–0.600 CNY·kg-1
straw knitting (SK)0.300–0.400 CNY·kg-1
Tab.1  Costs and benefits of different technologies in China in 2010 [12]
Fig.2  Straw and food outputs in China and simulation for different purposes: straw and food outputs from 1949 to 2030 in China (a) and simulation of crop residues utilization for different purposes (b)
2005201020202030
heat generation0.417.8924.5641.20
power generation0.002.1111.8928.44
forage production14.6617.8223.3425.81
manure production13.8014.5219.3724.91
industrial raw material production0.070.0410.9512.10
total28.9442.3890.11132.46
Tab.2  Net benefits of crop residues used in different methods (billion CNY)
Fig.3  Simulation and net benefits of crop residues recycled by different technologies: (a) simulation in 2020, (b) simulation in 2030, (c) net benefits in 2020, (d) net benefits in 2030
Fig.4  Sensitivity of net benefits for different technologies to economic costs: (a) 2020, (b) 2030

Notes: Dark gray parts show the changes of the net benefits for different technologies when the average cost per unit crop residues decreases by 10%; Light gray parts show the changes of the net benefits for different technologies when the average cost per unit crop residues increases by 10%

1 CherubiniF, UlgiatiS. Crop residues as raw materials for biorefinery systems–A LCA case study. Applied Energy, 2010, 87(1): 47–57
doi: 10.1016/j.apenergy.2009.08.024
2 DemirbasA. Importance of biomass energy sources for Turkey. Energy Policy, 2008, 36(2): 834–842
doi: 10.1016/j.enpol.2007.11.005
3 LalR. Crop residues as soil amendments and feedstock for bioethanol production. Waste Management (New York, N.Y.), 2008, 28(4): 747–758
doi: 10.1016/j.wasman.2007.09.023 pmid: 18053700
4 NDRC, MOA, MOF. The “Twelfth Five-Year Plan” of Crops Straw Comprehensive Utilization Scheme. Beijing: NDRC, 2011(in Chinese)
5 CaoG L, ZhangX Y, WangY Q, ZhengF C. Estimation of emissions from field burning of crop straw in China. Chinese Science Bulletin, 2008, 53(5): 784–790
doi: 10.1007/s11434-008-0145-4
6 MEP. Provisional Rules on Forbiddance of Burning Crop Residues to Make Good Comprehensive Use. Beijing: MEP, 1999(in Chinese)
7 NDRC. Middle and Long Term Program of Renewable Energy Development. Beijing: NDRC, 2007(in Chinese)
8 MatsumuraY, MinowaT, YamamotoH. Amount, availability, and potential use of rice straw (agricultural residue) biomass as an energy resource in Japan. Biomass and Bioenergy, 2005, 29(5): 347–354
doi: 10.1016/j.biombioe.2004.06.015
9 Callejón-FerreA J, Velázquez-MartíB, López-MartínezJ A, Manzano-AgugliaroF. Greenhouse crop residues: energy potential and models for the prediction of their higher heating value. Renewable & Sustainable Energy Reviews, 2011, 15(2): 948–955
doi: 10.1016/j.rser.2010.11.012
10 JiangD, ZhuangD, FuJ, HuangY, WenK. Bioenergy potential from crop residues in China: availability and distribution. Renewable & Sustainable Energy Reviews, 2012, 16(3): 1377–1382
doi: 10.1016/j.rser.2011.12.012
11 CarriquiryM A, DuX, TimilsinaG R. Second generation biofuels: economics and policies. Energy Policy, 2011, 39(7): 4222–4234
doi: 10.1016/j.enpol.2011.04.036
12 LuW, ZhangT. Life-cycle implications of using crop residues for various energy demands in China. Environmental Science & Technology, 2010, 44(10): 4026–4032
doi: 10.1021/es100157e pmid: 20426437
13 ZhangQ, ZhouD, ZhouP, DingH. Cost analysis of straw-based power generation in Jiangsu Province, China. Applied Energy, 2013, 102(0): 785–793
doi: 10.1016/j.apenergy.2012.08.032
14 ChenL, ZhaoL, RenC, WangF. The progress and prospects of rural biogas production in China. Energy Policy, 2012, 51(0): 58–63
doi: 10.1016/j.enpol.2012.05.052
15 HiloidhariM, BaruahD C. Crop residue biomass for decentralized electrical power generation in rural areas (part 1): investigation of spatial availability. Renewable & Sustainable Energy Reviews, 2011, 15(4): 1885–1892
doi: 10.1016/j.rser.2010.12.010
16 LeungD Y C, YinX L, WuC Z. A review on the development and commercialization of biomass gasification technologies in China. Renewable & Sustainable Energy Reviews, 2004, 8(6): 565–580
doi: 10.1016/j.rser.2003.12.010
17 LiQ, ChenD, ZhuB, HuS. Industrial straw utilization in China: simulation and analysis of the dynamics of technology application and competition. Technology in Society, 2012, 34(3): 207–215
doi: 10.1016/j.techsoc.2012.05.001
18 WeiW, ZhangW, HuD, OuL, TongY, ShenG, ShenH, WangX. Emissions of carbon monoxide and carbon dioxide from uncompressed and pelletized biomass fuel burning in typical household stoves in China. Atmospheric Environment, 2012, 56(0): 136–142
doi: 10.1016/j.atmosenv.2012.03.060
19 SCONPC. The Renewable Energy Law of the People’s Republic of China. Beijing: SCONPC, 2005
20 LiJ, BaiJ, Ralph O. MOA/DOE Project Expert Team. Assessment of Biomass Resource Availability in China. Beijing: China Environmental Science Press, 1998
21 LiQ, HuS, ChenD, ZhuB. System analysis of grain straw for centralised industrial usages in China. Biomass and Bioenergy, 2012, 47(0): 277–288
doi: 10.1016/j.biombioe.2012.09.033
22 ZhangK, ChangJ, GuanY, ChenH, YangY, JiangJ. Lignocellulosic biomass gasification technology in China. Renewable Energy, 2013, 49(0): 175–184
doi: 10.1016/j.renene.2012.01.037
23 ZhengY H, WeiJ G, LiJ, FengS F, LiZ F, JiangG M, LucasM, WuG L, NingT Y. Anaerobic fermentation technology increases biomass energy use efficiency in crop residue utilization and biogas production. Renewable & Sustainable Energy Reviews, 2012, 16(7): 4588–4596
doi: 10.1016/j.rser.2012.03.061
24 WeiX, DeclanC, ErdaL, YinlongX, HuiJ, JinheJ, IanH, YanL. Future cereal production in China: The interaction of climate change, water availability and socio-economic scenarios. Global Environmental Change, 2009, 19(1): 34–44
doi: 10.1016/j.gloenvcha.2008.10.006
[1] Supplementary Material Download
[1] Fengping Hu, Yongming Guo. Health impacts of air pollution in China[J]. Front. Environ. Sci. Eng., 2021, 15(4): 74-.
[2] Chi Zhang, Wenhui Kuang, Jianguo Wu, Jiyuan Liu, Hanqin Tian. Industrial land expansion in rural China threatens environmental securities[J]. Front. Environ. Sci. Eng., 2021, 15(2): 29-.
[3] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
[4] Dong Huang, Xiuhong Liu, Songzhu Jiang, Hongchen Wang, Junyan Wang, Yuankai Zhang. Current state and future perspectives of sewer networks in urban China[J]. Front. Environ. Sci. Eng., 2018, 12(3): 2-.
[5] Xiaolong Song, Jingwei Wang, Jianxin Yang, Bin Lu. An updated review and conceptual model for optimizing WEEE management in China from a life cycle perspective[J]. Front. Environ. Sci. Eng., 2017, 11(5): 3-.
[6] Yan Ma, Xiaoming Du, Yi Shi, Deyi Hou, Binbin Dong, Zhu Xu, Huiying Li, Yunfeng Xie, Jidun Fang, Zheng Li, Yunzhe Cao, Qingbao Gu, Fasheng Li. Engineering practice of mechanical soil aeration for the remediation of volatile organic compound-contaminated sites in China: Advantages and challenges[J]. Front. Environ. Sci. Eng., 2016, 10(6): 6-.
[7] Meng Gao,Gregory R. Carmichael,Yuesi Wang,Dongsheng Ji,Zirui Liu,Zifa Wang. Improving simulations of sulfate aerosols during winter haze over Northern China: the impacts of heterogeneous oxidation by NO2[J]. Front. Environ. Sci. Eng., 2016, 10(5): 16-.
[8] Hallvard Ødegaard. A road-map for energy-neutral wastewater treatment plants of the future based on compact technologies (including MBBR)[J]. Front. Environ. Sci. Eng., 2016, 10(4): 2-.
[9] Wenyan Wang, Wei Ouyang, Fanghua Hao, Yun Luan, Bo Hu. Spatial impacts of climate factors on regional agricultural and forestry biomass resources in north-eastern province of China[J]. Front. Environ. Sci. Eng., 2016, 10(4): 17-.
[10] Guoxia MA,Jinnan WANG,Fang YU,Yanshen ZHANG,Dong CAO. An assessment of the potential health benefits of realizing the goals for PM10 in the updated Chinese Ambient Air Quality Standard[J]. Front. Environ. Sci. Eng., 2016, 10(2): 288-298.
[11] Fei LI,Suocheng DONG,Fujia LI,Libiao YANG. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals[J]. Front. Environ. Sci. Eng., 2016, 10(2): 276-287.
[12] Chao ZENG,Dongjie NIU,Youcai ZHAO. A comprehensive overview of rural solid waste management in China[J]. Front. Environ. Sci. Eng., 2015, 9(6): 949-961.
[13] Yang PAN,Xiangru ZHANG,Jianping ZHAI. Whole pictures of halogenated disinfection byproducts in tap water from China’s cities[J]. Front. Environ. Sci. Eng., 2015, 9(1): 121-130.
[14] Kang XIAO, Ying XU, Shuai LIANG, Ting LEI, Jianyu SUN, Xianghua WEN, Hongxun ZHANG, Chunsheng CHEN, Xia HUANG. Engineering application of membrane bioreactor for wastewater treatment in China: Current state and future prospect[J]. Front. Environ. Sci. Eng., 2014, 8(6): 805-819.
[15] Shuxiao WANG,Lei ZHANG,Long WANG,Qingru WU,Fengyang WANG,Jiming HAO. A review of atmospheric mercury emissions, pollution and control in China[J]. Front.Environ.Sci.Eng., 2014, 8(5): 631-649.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed