Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (5) : 650-658    https://doi.org/10.1007/s11783-013-0605-1
RESEARCH ARTICLE
Charge and separation characteristics of nanofiltration membrane embracing dissociated functional groups
Zhun MA1,2,Meng WANG1,Xueli GAO1,Congjie GAO1,*()
1. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2. Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(167 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The current work focused on the investigation of charge and separation characteristics of nanofiltration (NF) membrane embracing dissociated functional groups under different electrolyte solutions. The electro-kinetic method was carried out to assess the membrane volume charge density (X) with different salt concentrations ranging from 0.1 to 10 mol·m-3 and different electrolyte species, such as type 1–1, type 2–1 and type 3–1. The Donnan steric pore model-dielectric exclusion (DSPM-DE) model was employed to evaluate the separation characteristics of the NF membrane for wide range of electrolyte concentration (from 25.7 to 598.9 mol·m-3). The results indicated that the dissociation of the hydrophilic functional groups and the specific adsorption contributed to charge formation on membrane surface. The former played a dominant role in type 1–1 and type 2–1 electrolytes at dilute aqueous solutions (0.1–0.5 mol·m-3). However, for type 3–1 electrolyte, specific adsorption should contribute to the charge effect to a large extent. Moreover, the correlation between the volume charge density and feed concentration was in accordance with Freundlich isotherm. Furthermore, it was found that the separation characteristic of NF membrane could be evaluated well by DSPM-DE model coupling with electro-kinetic method in a whole concentration range.

Keywords Sulfonated polyethersulfone nanofiltration membrane      charge characteristics      electro-kinetic method      volume charge density      separation behavior     
Corresponding Author(s): Congjie GAO   
Issue Date: 20 June 2014
 Cite this article:   
Zhun MA,Meng WANG,Xueli GAO, et al. Charge and separation characteristics of nanofiltration membrane embracing dissociated functional groups[J]. Front.Environ.Sci.Eng., 2014, 8(5): 650-658.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0605-1
https://academic.hep.com.cn/fese/EN/Y2014/V8/I5/650
equationexpressionNo.
Extended Nernst-Planck equationji=-Di,pdcidx-ziciDi,pRTFdψdx+Ki,cciJv(4)
Concentration and potential gradients through the membranedcdx=JvKi,dDi,[Ki,cci-ci(δ+)]-ziciRTFdψdx(5)
dψdx=i=1nziJvKi,dDi,[Ki,cci-ci(δ+)]FRTi=1n(zi2ci) in which: Di,p=Ki,dDi,, ji=Jvci(δ+)(6)
Steric hindrance factorsKi,d=1.0-2.30λi+1.154λi2+0.224λi3,Ki,c=1.0+0.054λi-0.988λi2+0.441λi3,(7)
λi=rirp(8)
Boundary conditionsAt x=0c2(0)=c2(0+)x=δc2(δ)=c2(δ-)(9)
Partitioning at membrane/external solution interfaceci(0+)ci(0-)=ϕiexp?(-ziΔψD0)exp?(-zi2ΔW0)(10a)
ci(δ+)ci(δ-)=ϕiexp?(-ziΔψDδ)exp?(-zi2ΔWδ)(10b)
ΔW0=rB{κ-1(0-)-κ-1(0+)-1rPln?[1-γexp?(-2rPκ-1(0+))]}(11a)
ΔWδ=rB{κ-1(δ+)-κ-1(δ-)-1rPln?[1-γexp?(-2rPκ-1(δ-))]}(11b)
rB=F28πϵPRTNA,γ=1-ϵM/ϵP1+ϵM/ϵP,κ-1(0-)=1FϵSRT2I(0-),κ-1(0+)=1FϵPRT2I(0+); I(0-)=12i=1nzi2ci(0-), ϵp=80-2(80-ϵ?)(drp)+(80-ϵ?)(drp)2(12)
Steric partitioningϕi=(1-λi)2(13)
The electroneutrality condition inside the solution and the porei=1nziCi=0i=1nzicim=-X(14)
Tab.1  Summary of the main equations used for DSPM-DE model [23-25]
Fig.1  Schematic representation of tangential streaming potential measurement system (1) temperature meter; (2) conductivity meter; (3) pH meter; (4) Ag/AgCl electrode; (5) streaming potential measurement cell; (6) NF membrane; (7) waste container
Fig.2  The zeta potential of NTR-7450 nanofiltration membrane in the different system
Fig.3  The volume charge density of NTR-7450 nanofiltration membrane in the different systems
Fig.4  Ln–Ln plot of the membrane volume charge density vs. electrolyte concentration for the NTR-7450 nanofiltration membrane in different systems
electrolyte solutionabR
NaCl0.7961.2980.945
MgCl20.6440.5010.950
LaCl32.1901.1020.965
Tab.2  Parameters of Freundlich adsorption isotherms in electrolyte solutions for the NTR-7450 nanofiltration membrane
Fig.5  Plot of Ln | X | vs. Ln | C | in the case of NaCl salt solution: 1 evaluated from the Electrokinetic method; 2 determined from the DSPM-DE model by the retention data
Fig.6  Retention of NaCl salt solution as a function of feed solution concentration in NTR-7450 nanofiltration membrane
1 BowenW R, MohammadA W. A theoretical basis for specifying nanofiltration membrane–dye/salt/water stream. Desalination, 1998, 117(1-3): 257-264
doi: 10.1016/S0011-9164(98)00112-X
2 WangM, AnQ F, WuL, MoJ X, GaoC J. Recent Developments in the measurement of zeta-potential of membrane. Chinese Journal of Analytical Chemistry, 2007, 35(4): 605-610
3 PeetersJ M M, MulderM H V, StrathmannH. Streaming potential measurements as a characterization method for nanofiltration membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 150(1-3): 247-259
doi: 10.1016/S0927-7757(98)00828-0
4 AfonsoM D, HagmeyerG, GimbelR. Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions. Separation and Purification Technology, 2001, 22-23(1-2): 529-541
doi: 10.1016/S1383-5866(00)00135-0
5 ArizaM J, BenaventeJ. Streaming potential along the surface of polysulfone membranes: a comparative study between two different experimental systems and determination of electrokinetic and adsorption parameters. Journal of Membrane Science, 2001, 190(1): 119-132
doi: 10.1016/S0376-7388(01)00430-6
6 BandiniS. Modelling the mechanism of charge formation in NF membranes: theory and application. Journal of Membrane Science, 2005, 264(1-2): 75-86
doi: 10.1016/j.memsci.2005.03.055
7 SzymczykA, FievetP, BandiniS. On the amphoteric behavior of Desal DK nanofiltration membranes at low salt concentrations. Journal of Membrane Science, 2010, 355(1-2): 60-68
doi: 10.1016/j.memsci.2010.03.006
8 TakagiR, NakagakiM. Membrane potential of separation membranes as affected by ion adsorption. Journal of Membrane Science, 1992, 71(3): 189-200
doi: 10.1016/0376-7388(92)80204-W
9 TakagiR, NakagakiM. Ionic dialysis through amphoteric membranes. Separation and Purification Technology, 2003, 32(1-3): 65-71
doi: 10.1016/S1383-5866(03)00055-8
10 SchaepJ, VandecasteeleC. Evaluating the charge of nanofiltration membranes. Journal of Membrane Science, 2001, 188(1): 129-136
doi: 10.1016/S0376-7388(01)00368-4
11 SchaepJ, VandecasteeleC, MohammadA W, BowenW R. Modelling the retention of ionic components for different nanofiltration membranes. Separation and Purification Technology, 2001, 22-23(1-2): 169-179
doi: 10.1016/S1383-5866(00)00163-5
12 FievetP, SbaïM, SzymczykA, VidonneA. Determining the ζ-potential of plane membranes from tangential streaming potential measurements: effect of the membrane body conductance. Journal of Membrane Science, 2003, 226(1-2): 227-236
doi: 10.1016/j.memsci.2003.09.007
13 SbaïM, SzymczykA, FievetP, SorinA, VidonneA, Pellet-RostaingS, Favre-ReguillonA, LemaireM. Influence of the membrane pore conductance on tangential streaming potential. Langmuir, 2003, 19(21): 8867-8871
doi: 10.1021/la034966a
14 YaroshchukA, RibitschV.Role of channel wall conductance in the determination of ζ-potential from electrokinetic measurements. Langmuir, 2002, 18: 2036-2038.
15 SzymczykA, Fatin-RougeN, FievetP. Tangential streaming potential as a tool in modeling of ion transport through nanoporous membranes. Journal of Colloid and Interface Science, 2007, 309(2): 245-252
doi: 10.1016/j.jcis.2007.02.005 pmid: 17321538
16 VezzaniD, BandiniS. Donnan equilibrium and dielectric exclusion for characterization of nanofiltration membranes. Desalination, 2002, 149(1-3): 477-483
doi: 10.1016/S0011-9164(02)00784-1
17 BowenW R, MohammadA W, HilalN. Characterisation of nanofiltration membranes for predictive purposes-use of salts, uncharged solutes and atomic force microscopy. Journal of Membrane Science, 1997, 126(1): 91-105
doi: 10.1016/S0376-7388(96)00276-1
18 BowenW R, MukhtarH. Characterisation and prediction of separation performance of nanofiltration membranes. Journal of Membrane Science, 1996, 112(2): 263-274
doi: 10.1016/0376-7388(95)00302-9
19 BowenW R, WelfootJ S. Modelling the performance of membrane nanofiltration-critical assessment and model development. Chemical Engineering Science, 2002, 57(7): 1121-1137
doi: 10.1016/S0009-2509(01)00413-4
20 BowenW R, WelfootJ S. Predictive modelling of nanofiltration: membrane specification and process optimization. Desalination, 2002, 147(1-3): 197-203
doi: 10.1016/S0011-9164(02)00534-9
21 LabbezC, FievetP, SzymczykA, VidonneA, FoissyA, PagettiJ. Retention of mineral salts by a polyamide nanofiltration membrane. Separation and Purification Technology, 2003, 30(1): 47-55
doi: 10.1016/S1383-5866(02)00107-7
22 SzymczykA, FievetP. Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model. Journal of Membrane Science, 2005, 252(1-2): 77-88
doi: 10.1016/j.memsci.2004.12.002
23 GeraldesV, AlvesA M B. Computer program for simulation of mass transport in nanofiltration membranes. Journal of Membrane Science, 2008, 321(2): 172-182
doi: 10.1016/j.memsci.2008.04.054
24 MohammadA W, HilalN, Al-ZoubiH, DarwishN A. Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes. Journal of Membrane Science, 2007, 289(1-2): 40-50
doi: 10.1016/j.memsci.2006.11.035
25 BandiniS, VezzaniD. Nanofiltration modeling: the role of dielectric exclusion in membrane characterization. Chemical Engineering Science, 2003, 58(15): 3303-3326
doi: 10.1016/S0009-2509(03)00212-4
26 FregerV, ArnotT C, HowellJ A. Separation of concentrated organic/inorganic salt mixtures by nanofiltration. Journal of Membrane Science, 2000, 178(1-2): 185-193
doi: 10.1016/S0376-7388(00)00516-0
27 MaZ, WangM, WangD, SuB W, GaoC J. The study on interficial electrical phenomena of polyamide nanofiltration membrane through electrokinetic method. Chinese Journal of Analytical Chemistry, 2008, 36(12): 1707-1710
28 MulderM. Basic Principles of Membrane Technology. Kluwer: Dordrecht, 1991, 149-159
29 BouraneneS, FievetP, SzymczykA, El-Hadi SamarM, VidonneA. Influence of operating conditions on the rejection of cobalt and lead ions in aqueous solutions by a nanofiltration polyamide membrane. Journal of Membrane Science, 2008, 325(1): 150-157
doi: 10.1016/j.memsci.2008.07.018
30 AfonsoM D, PinhoM N. Transport of MgSO4, MgCl2, and Na2SO4 across an amphoteric nanofiltration membrane. Journal of Membrane Science, 2000, 179(1-2): 137-154
doi: 10.1016/S0376-7388(00)00495-6
31 TeixeiraM R, RosaM J, NystromM. The role of membrane charge in nanofiltration performance. Journal of Membrane Science, 2005, 265(1-2): 160-166
doi: 10.1016/j.memsci.2005.04.046
32 BowenW R, CaoX W. Electrokinetic effects in membrane pores and the determination of zeta-potential. Journal of Membrane Science, 1998, 140(2): 267-273
doi: 10.1016/S0376-7388(97)00278-0
33 AfonsoM D, PinhoM N. Mass transfer modeling for salt transport in amphoteric nanofiltration membranes. Industrial & Engineering Chemistry Research, 1998, 37(10): 4118-4127
doi: 10.1021/ie980092p
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed