Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2014, Vol. 8 Issue (6) : 960-966    https://doi.org/10.1007/s11783-013-0612-2
RESEARCH ARTICLE
Biosorption of Cr(VI) by carbonized Eupatorium adenophorum and Buckwheat straw: thermodynamics and mechanism
Jinfa CHEN1,Ping YANG2,*(),Dagang SONG1,Sha YANG1,Li ZHOU1,Lei HAN1,Bo LAI2
1. Department of Agricultural Science, Xichang College, Xichang 615013, China;
2. College of Architecture & Environment, Sichuan University, Chengdu 610065, China
 Download: PDF(132 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

High quality and low cost carbon can be prepared from Eupatorium adenophorum (E. adenophorum) and Buckwheat straw. The biosorbent was used for Cr(VI) removal. The effect of experimental parameters, such as pH, sorbent dosage and temperature were examined and the optimal experimental condition was determined. Solution pH is found influencing the adsorption. Cr(VI) removal efficiency is found to be maximum (98%) at pH= 1. Langmuir and Freundlich adsorption isotherms were applicable to the adsorption process and their constants were evaluated. The adsorption data obtained agreed well with the Langmuir sorption isotherm model. The maximum adsorption capacities for Cr(VI) ranged from 46.23 to 55.19 mg·g-1 for temperature between 298 K and 308 K under the condition of pH= 1.0. Thermodynamic parameters such as free energy change (ΔG), enthalpy (ΔH) and entropy (ΔS) indicate a spontaneous, endothermic and increased randomness nature of Cr(VI) adsorption. Studies found that the raw E. adenophorum and buckwheat straw mixed materials with simple treatment had a high efficiency for the removal of Cr(VI) and would be a promising adsorbent.

Keywords Eupatorium adenophorum      buckwheat straw      adsorption      Cr(VI)      thermodynamics     
Corresponding Author(s): Ping YANG   
Online First Date: 11 December 2013    Issue Date: 17 November 2014
 Cite this article:   
Lei HAN,Bo LAI,Jinfa CHEN, et al. Biosorption of Cr(VI) by carbonized Eupatorium adenophorum and Buckwheat straw: thermodynamics and mechanism[J]. Front. Environ. Sci. Eng., 2014, 8(6): 960-966.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0612-2
https://academic.hep.com.cn/fese/EN/Y2014/V8/I6/960
carbonized time/min carbonized temperature/K mass ratio the highest removal ratio
15 673 1:1 54%
15 673 2:1 77.1%
15 673 1:2 37.5%
45 823 3:1 85.7%
30 723 4:1 90%
Tab.1  carbonization parameters correspond to the best removal ratio of each mass ratio
Fig.1  Effect of pH on Cr(VI) adsorption
Fig.2  Effect of sorbent dosage on Cr(VI) adsorption
Fig.3  Effect of contact time on Cr(VI) adsorption
Fig.4  Effect of temperature on Cr(VI) adsorption
T/K Langmuir Freundlich Thermodynamic parameters
q m /(mg·g-1) K c /(L·mol-1) R2 K f /(mg1-1/n·L1/n·g-1) n R2 Δ G /(kJ·mol-1) Δ S /( J·mol-1K-1) Δ H /(kJ·mol-1)
298 46.23 2040.948 0.9418 31.59 3.789 0.9242 -35.99 760.45 143.714
303 55.19 5315.520 0.9362 37.91 4.936 0.6851 -39.01
308 53.32 8828.820 0.9914 41.65 5.054 0.8183 -40.95
Tab.2  Parameters of the Langmuir, Freundlich models and thermodynamic
adsorbent maximum adsorbent capacity, q m /(mg·g-1) temperature/K optimum pH references
activated tamarind seeds 29.7 303 2.0 [44]
chemically treated ACs. 15.45 298 3.0 [45]
chemically modi?ed biomass of Rhizopus nigricans 51.20 303 2.0 [46]
carbonized pineapple leaves 18.77 293 2.0 [47]
sawdust 41.5 303 1.0 [48]
formaldehyde treatment rice husk 10.4 298 2.0 [49]
wheat-residue derived black carbon 21.34 303 1.0 [50]
carbonized E. adenophorum and buckwheat straw 55.19 303 1.0 this study
Tab.3  Comparison of adsorption capacity q m of various carbons for Cr(VI)
1 Ma Q, Zhang X L. Advances in new technology for heavy metal wastewater treatment at home and abroad. Chinese Journal of Environmental Engineering, 2007, 1(7): 10–14 (in Chinese)
2 Babel S, Kurniawan T A. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 2003, 97(1–2): 219–243
https://doi.org/10.1016/S0304-3894(02)00263-7 pmid: 12573840
3 Kurniawan T A, Chan G Y S., Lo W H, Babel S. Physico chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 2006, 118(1–2): 83–98
https://doi.org/10.1016/j.cej.2006.01.015
4 Altundogan H S.Cr(VI) removal from aqueous solution by iron(III) hydroxide-loaded sugar beet pulp. Process Biochemistry, 2005, 40(3–4): 1443–1452
https://doi.org/10.1016/j.procbio.2004.06.027
5 Namasivayam C, Sureshkumar M V. Removal of chromium(VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent. Bioresource Technology, 2008, 99(7): 2218–2225
https://doi.org/10.1016/j.biortech.2007.05.023 pmid: 17601729
6 Singh I B, Singh D R. Cr(VI) removal in acidic aqueous solution using iron-bearing industrial solid wastes and their stabilisation with cement. Environmental Technology, 2002, 23(1): 85–95
https://doi.org/10.1080/09593332508618436 pmid: 11918404
7 Kobya M. Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies. Bioresource Technology, 2004, 91(3): 317–321
https://doi.org/10.1016/j.biortech.2003.07.001 pmid: 14607493
8 Li R H, Zhang Y M, Zhang Z Q, Meng Z F, Tang C L. The characteristics of Cr(VI) adsorbed by walnuts shell powder. Journal of Agro-Environmental Science, 2009, 28 (8): 1693–1700 (in Chinese)
9 Guo L H, Jeffrey X. S, Tim A G L. Removal of Cr(VI) from aqueous solution using activated carbon modified with nitric acid. Chemical Engineering Journal, 2009, 152(2–3): 434–439
10 Lach J, Okoniewska E, Neczaj E, Kacprzak M. Removal of Cr(III) cations and Cr(VI) anions on activated carbons oxidized by CO2. Desalination, 2007, 206(1–3): 259–269
https://doi.org/10.1016/j.desal.2006.04.056
11 Yue Z R, Bender S E, Wang J W, Economy J. Removal of chromium Cr(VI) by low-cost chemically activated carbon materials from water. Journal of Hazardous Materials, 2008, 166(1): 74–78
https://doi.org/10.1016/j.jhazmat.2008.10.125 pmid: 19091466
12 ?zdemir E, Durano?lu D, Beker ü, Avc? A ?, Process optimization for Cr(VI) adsorption onto activated carbons by experimental design. Chemical Engineering Journal, 2011, 172(1): 207–218
https://doi.org/10.1016/j.cej.2011.05.091
13 Bishnoi N R, Bajaj M, Sharma N, Gupta A. Adsorption of Cr(VI) on activated rice husk carbon and activated alumina. Bioresource Technology, 2004, 91(3): 305–307
https://doi.org/10.1016/S0960-8524(03)00204-9 pmid: 14607491
14 Ponou J, Kim J, Wang L P, Dodbiba G, Fujita T. Sorption of Cr(VI) anions in aqueous solution using carbonized or dried pineapple leaves. Chemical Engineering Journal, 2011, 172(2–3): 906–913
https://doi.org/10.1016/j.cej.2011.06.081
15 Chen S, Yue Q, Gao B, Li Q, Xu X. Removal of Cr(VI) from aqueous solution using modified corn stalks: Characteristic, equilibrium, kinetic and thermodynamic study. Chemical Engineering Journal, 2011, 168(2): 909–917
https://doi.org/10.1016/j.cej.2011.01.063
16 Chen G Q, Zhang W J, Zeng G M, Huang J H, Wang L, Shen G L. Surface-modified phanerochaete chrysosporium as a biosorbent for Cr(VI)-contaminated wastewater. Journal of Hazardous Materials, 2011, 186(2–3): 2138–2143
https://doi.org/10.1016/j.jhazmat.2010.12.123 pmid: 21247693
17 Chen S, Yue Q, Gao B, Xu X. Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue. Journal of Colloid and Interface Science, 2010, 349(1): 256–264
https://doi.org/10.1016/j.jcis.2010.05.057 pmid: 20576272
18 Demirbas E, Kobya M, Konukman A E S. Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions. Journal of Hazardous Materials, 2008, 154(1–3): 787–794
https://doi.org/10.1016/j.jhazmat.2007.10.094 pmid: 18068295
19 Tani F H, Barrington S. Zinc and copper uptake by plants under two transpiration rates. Part II. Buckwheat (Fagopyrum esculentum L.). Environmental Pollution, 2005, 138(3): 548–558
pmid: 16043272
20 Garg U K, Kaur M P, Garg V K, Sud D. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. Journal of Hazardous Materials, 2007, 140(1–2): 60–68
https://doi.org/10.1016/j.jhazmat.2006.06.056 pmid: 16879918
21 Wang Y, Gao P, Zheng Y, Liu K, Liu S. The toxicities of the extracts from Eupatorium adenophorum against Aphis gossypii and their aphid-killing mechanism. Acta Phytophylacica Sinica, 2002, 29(4): 337–340 (in Chinese)
22 Liu Y P, Gao P, Pan W G, Xu F, Liu S. Effect of several plant extracts on Tetranykhusucticae and Panoychus. Journal of Sichuan University (Natural Science Edition), 2004, 41(1): 212–215
23 Nong X, Ren Y J, Wang J H, Fang C L, Xie Y, Yang D Y, Liu T F, Chen L, Zhou X, Gu X B, Zheng W P, Peng X R, Wang S X, Lai S J, Yang G Y. Clinical efficacy of botanical extracts from Eupatorium adenophorum against the scab mite, Psoroptes cuniculi. Veterinary Parasitology, 2013, 192(1–3): 247–252
https://doi.org/10.1016/j.vetpar.2012.10.005 pmid: 23107339
24 Rymer C. The effect of wilting and soaking Eupatorium adenophorum on its digestibility in vitro and voluntary intake by goats. Animal Feed Science and Technology, 2008, 141(1–2): 49–60
https://doi.org/10.1016/j.anifeedsci.2007.04.013
25 Sahoo A, Singh B, Sharma O P. Evaluation of feeding value of Eupatorium adenophorum in combination with mulberry leaves. Livestock Science, 2011, 136(2–3): 175–183
https://doi.org/10.1016/j.livsci.2010.08.019
26 Madan S P M. An alternative resource for biogas production. Energy Sources, 2000, 22(8): 713–721
https://doi.org/10.1080/00908310050120263
27 Sun K, Jiang J C, Li J, Dai W D. Preparation and characterization of activated carbon from Eupatorium adenophorum. Scientia Silvae Sinicae, 2010, 46(3): 178–182 (in Chinese)
28 Guo S, Li W, Zhang L, Peng J, Xia H, Zhang S. Kinetics and equilibrium adsorption study of lead(II) onto the low cost adsorbent-Eupatorium adenophorum spreng. Process Safety and Environmental Protection, 2009, 87(5): 343–351
https://doi.org/10.1016/j.psep.2009.06.003
29 Ho Y S. Selection of optimum sorption isotherm. Carbon, 2004, 42(10): 2115–2116
https://doi.org/10.1016/j.carbon.2004.03.019
30 Wang Z, Yin P, Qu R, Chen H, Wang C, Ren S. Adsorption kinetics, thermodynamics and isotherm of Hg(II) from aqueous solutions using buckwheat hulls from Jiaodong of China. Food Chemistry, 2013, 136(3–4): 1508–1514
https://doi.org/10.1016/j.foodchem.2012.09.090 pmid: 23194555
31 Gupta S, Babu B V. Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: Equilibrium, kinetics and regeneration studies. Chemical Engineering Journal, 2009, 150(2–3): 352–365
https://doi.org/10.1016/j.cej.2009.01.013
32 Acar F N, Malkoc E. The removal of chromium(VI) from aqueous solutions by Fagus orientalis L. Bioresource Technology, 2004, 94(1): 13–15
https://doi.org/10.1016/j.biortech.2003.10.032 pmid: 15081480
33 Bhattacharya A K, Naiya T K, Mandal S N, Das S K. Adsorption, kinetics and equilibrium studies on removal of Cr (VI) from aqueous solutions using different low-cost adsorbents. Chemical Engineering Journal, 2008, 137(3): 529–541
34 Malkoc E, Nuhoglu Y. Potential of tea factory waste for chromium(VI) removal from aqueous solutions: Thermodynamic and kinetic studies. Separation and Purification Technology, 2007, 54(3): 291–298
https://doi.org/10.1016/j.seppur.2006.09.017
35 Namasivayam C, Prabha D, Kumutha M. Removal of direct red and acid brilliant blue by adsorption on to banana pith. Bioresource Technology, 1998, 64(1): 77–79
https://doi.org/10.1016/S0960-8524(97)86722-3
36 Li L, Yang C H, Sun P S, Huang J, Zeng G M, Zhou C S. Optimization of the biosorption of Pb2+ by citron peel using response surface methodology. Acta Scientiae Circumstantiae, 2009, 29(7): 1426–1433 (in Chinese)
37 Nemr A E. Potential of pomegranate husk carbon for Cr(VI) removal from wastewater: kinetic and isotherm studies. Journal of Hazardous Materials, 2009, 161(1): 132–141
https://doi.org/10.1016/j.jhazmat.2008.03.093 pmid: 18485590
38 Wang X S, Li Z Z, Tao S R. Removal of chromium(VI) from aqueous solution using walnut hull. Journal of Environmental Management, 2009, 90(2): 721–729
https://doi.org/10.1016/j.jenvman.2008.01.011 pmid: 18343014
39 Jain M, Garg V K, Kadirvelu K. Investigation of Cr(VI) adsorption onto chemically treated Helianthus annuus: optimization using response surface methodology. Bioresource Technology, 2011, 102(2): 600–605
https://doi.org/10.1016/j.biortech.2010.08.001 pmid: 20739179
40 Giri A K, Patel R, Mandal S. Removal of Cr(VI) from aqueous solution by Eichhornia crassipes root biomass-derived activated carbon. Chemical Engineering Journal, 2012, 185–186(15): 71–81
https://doi.org/10.1016/j.cej.2012.01.025
41 Park D, Yun Y S, Kim J Y, Park J M. How to study Cr(VI) biosorption: Use of fermentation waste for detoxifying Cr (VI) in aqueous solution. Chemical Engineering Journal, 2008, 136(2–3): 173–179
https://doi.org/10.1016/j.cej.2007.03.039
42 Li R H, Zhang Z Q, Meng Z F, Li H Y. Biosorption of Cr(VI) by corn stalk biomass: thermodynamics and mechanism. Acta Scientiae Circumstantiae., 2009, 29(7): 1434–1441 (in Chinese)
43 Chand R, Watari T, Inoue K. Evaluation of wheat straw and barley straw carbon for Cr(VI) adsorption. Separation and Purification Technology, 2009, 65(3): 331–336
https://doi.org/10.1016/j.seppur.2008.11.002
44 Gupta S, Babu B V. Utilization of waste product (tamarind seeds) for the removal of Cr(VI) from aqueous solutions: equilibrium, kinetics, and regeneration studies. Journal of Environmental Management, 2009, 90(10): 3013–3022
https://doi.org/10.1016/j.jenvman.2009.04.006 pmid: 19473746
45 Zhao N Q, Wei N, Li J J, Qiao Z J, Cui J, He F. Surface properties of chemically modified activated carbons for adsorption rate of Cr(VI). Chemical Engineering Journal, 2005, 115(1–2): 133–138
https://doi.org/10.1016/j.cej.2005.09.017
46 Bai R S, Abraham T E. Studies on enhancement of Cr(VI) biosorption by chemically modified biomass of Rhizopus nigricans.. Water Research, 2002, 36(5): 1224–1236
https://doi.org/10.1016/S0043-1354(01)00330-X pmid: 11902777
47 Ponou J, Kim J, Wang L P, Dodhiba G, Fujita T. Sorption of Cr(VI) anions in aqueous solution using carbonized or dried pineapple leaves. Chemical Engineering Journal, 2011, 172(2–3):906–913
48 Gupta S, Babu B V. Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: Equilibrium, kinetics and regeneration studies. Chemical Engineering Journal, 2009, 150(2–3): 352–365
https://doi.org/10.1016/j.cej.2009.01.013
49 Bansal M, Garg U, Singh D, Garg V K. Removal of Cr(VI) from aqueous solutions using pre-consumer processing agricultural waste: a case study of rice husk. Journal of Hazardous Materials, 2009, 162(1): 312–320
https://doi.org/10.1016/j.jhazmat.2008.05.037 pmid: 18573603
50 Wang X S, Chen L F, Li F Y, Chen K L, Wan W Y, Tang Y J. Removal of Cr(VI) with wheat-residue derived black carbon: reaction mechanism and adsorption performance. Journal of Hazardous Materials, 2010, 175(1–3): 816–822
https://doi.org/10.1016/j.jhazmat.2009.10.082 pmid: 19926221
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[4] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[5] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[6] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[7] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[8] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[9] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[10] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[11] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[12] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[13] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[14] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[15] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed