Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (5) : 659-665    https://doi.org/10.1007/s11783-013-0613-1
RESEARCH ARTICLE
Promoting effect of Zr on the catalytic combustion of methane over Pd/γ-Al2O3 catalyst
Hongbo NA1,Tianle ZHU1,*(),Zhiming LIU2,*(),Yifei SUN1
1. School of Chemistry and Environment, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
2. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
 Download: PDF(619 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effect of Zr on the catalytic performance of Pd/γ-Al2O3 for the methane combustion was investigated. The results show that the addition of Zr can improve the activity and stability of Pd/γ-Al2O3 catalyst, which, based on the catalyst characterization (N2 adsorption, XRD, CO-Chemisorption, XPS, CH4-TPR and O2-TPO), is ascribed to the interaction between Pd and Zr. The active phase of methane combustion over supported palladium catalyst is the Pd0/Pd2+ mixture. Zr addition inhibits Pd aggregation and enhances the redox properties of active phase Pd0/ Pd2+. H2 reduction could effectively reduce the oxidation degree of Pd species and regenerate the active sites (Pd0/ Pd2+).

Keywords Pd-Zr/Al2O3      methane      catalytic combustion      catalyst regeneration     
Corresponding Author(s): Tianle ZHU   
Issue Date: 20 June 2014
 Cite this article:   
Hongbo NA,Tianle ZHU,Zhiming LIU, et al. Promoting effect of Zr on the catalytic combustion of methane over Pd/γ-Al2O3 catalyst[J]. Front.Environ.Sci.Eng., 2014, 8(5): 659-665.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0613-1
https://academic.hep.com.cn/fese/EN/Y2014/V8/I5/659
Fig.1  Methane conversion over Zr/γ-Al2O3, Pd/γ-Al2O3 and Pd-Zr/γ-Al2O3 as a function of temperature
catalystT50/°CT90/°CSpecific rates of CH4 conversion/(μmolgcat-1s-1)TOF/(10-2·s-1]250 °C
250°C300 °C350 °C
Pd/γ-Al2O33253640.1671.4196.8311.320
Pd-Zr/γ-Al2O32973300.7814.7058.9294.328
Tab.1  Catalytic activities of Pd/γ-Al2O3 and Pd-Zr/γ-Al2O3 for methane combustion
Fig.2  Methane conversion over Pd/γ-Al2O3 and Pd-Zr/γ-Al2O3 under isothermal conditions (320°C) versus time, the arrows correspond to the regeneration methods
Fig.3  XRD patterns of of fresh γ-Al2O3, Zr/γ-Al2O3, Pd/γ-Al2O3, Pd-Zr/γ-Al2O3
Fig.4  TEM, HR-TEM micrographs of Pd/γ-Al2O3 (fresh: 4(a) and 4(b); aged: 4(e) and 4(f)) and Pd-Zr/γ-Al2O3 (fresh: 4(c) and 4(d); aged: 4(g) and 4(h))
catalystbulkPdd/(wt.%)bulkZrd/(wt.%)dispersione%Pdsizef/nmBETareag/(m2·g-1)BE of Pd(3d5/2)/eVPd speciesh
Pd/γ-Al2O3fra2.0706.59135335.4 336.0Pd0Pd2+
Pd/γ-Al2O3agbn.m.n.m.4.414113336.1 337.3Pd2+Pd4+
Pd/γ-Al2O3recn.m.n.m.4.1.n.m107335.1 335.9Pd0Pd2+
Pd-Zr/γ-Al2O3fr1.981.019.74157335.5 336.2Pd0Pd2+
Pd-Zr/γ-Al2O3agn.m.n.m.9.25148335.6 336.4Pd0Pd2+
Tab.2  Chemical and physical properties of the catalysts
Fig.5  XPS spectra of Pd 3d over Pd/γ-Al2O3, as fresh, and after 30 h aged treatment under combustion of methane conditions, and then regenerated by R[H]
Fig.6  CH4-TPR profiles of Pd/γ-Al2O3 and Pd-Zr/γ-Al2O3
Fig.7  O2-TPO profiles of Pd/γ-Al2O3 and Pd-Zr/γ-Al2O3
1 GélinP, PrimetM. Complete oxidation of methane at low temperature over noble metal based catalysts: a review. Applied Catalysis B: Environmental, 2002, 39(1): 1–37
doi: 10.1016/S0926-3373(02)00076-0
2 CiuparuD, LyubovskyM R, AltmanE, PfefferleL D, DatyeA. Altman E, Pfefferle L D, Datye A.Catalytic combustion of methane over palladium-based catalysts. Catalysis Reviews. Science and Engineering, 2002, 44(4): 593–649
doi: 10.1081/CR-120015482
3 SimplícioL M, BrandãoS T,DomingosD, Bozon-VerdurazF, SalesE A. Catalytic combustion of methane at high temperatures: Cerium effect on PdO/Al2O3 catalysts. Applied Catalysis A: General, 2009, 360(1): 2–7
doi: 10.1016/j.apcata.2009.03.005
4 GuoY, LuG, ZhangZ, JiangL, WangX, LiS, ZhangB, NiuJ. Effects of ZrO2/Al2O3 properties on the catalytic activity of Pd catalysts for methane combustion and CO oxidation. Catalysis Today, 2007, 126(3–4): 441–448
doi: 10.1016/j.cattod.2007.06.015
5 ArosioF, ColussiS, TrovarelliA, GroppiG. Effect of alternate CH4-reducing/lean combustion treatments on the reactivity of fresh and S-poisoned Pd/CeO2/Al2O3 catalysts. Applied Catalysis B: Environmental, 2008, 80(3–4): 335–342
doi: 10.1016/j.apcatb.2007.11.030
6 YoshidaH, NakajimaT, YazawaY, HattoriT. Support effect on methane combustion over palladium catalysts. Applied Catalysis B: Environmental, 2007, 71(1–2): 70–79
doi: 10.1016/j.apcatb.2006.08.010
7 Ramírez-LópezR, Elizalde-MartinezI,Balderas-TapiaL. Complete catalytic oxidation of methane over Pd/CeO2–Al2O3: The influence of different ceria loading. Catalysis Today, 2010, 150(3–4): 358–362
doi: 10.1016/j.cattod.2009.10.007
8 OzawaY, TochiharaY, WatanabeA, NagaiM, OmiS. Stabilizing effect of Nd2O3, La2O3 and ZrO2 on Pt·PdO/Al2O3 during catalytic combustion of methane. Applied Catalysis A: General, 2004, 258(2): 261–267
doi: 10.1016/j.apcata.2003.09.035
9 FuruyaT, SasakiK, HanakataY, OhhashiT, YamadaM, TsuchiyaT, FuruseY. Development of a hybrid catalytic combustor for a 1300°C class gas turbine. Catalysis Today, 1995, 26(3–4): 345–350
doi: 10.1016/0920-5861(95)00157-X
10 BayletA, RoyerS, MarecotP, TatibouetJ M, DuprezD. High catalytic activity and stability of Pd doped hexaaluminate catalysts for the CH4 catalytic combustion. Applied Catalysis B: Environmental, 2008, 77(3–4): 237–247
doi: 10.1016/j.apcatb.2007.07.031
11 ChoudharyT V, BanerjeeS, ChoudharyV R. Influence of PdO content and pathway of its formation on methane combustion activity. Catalysis Communications, 2005, 6(2): 97–100
doi: 10.1016/j.catcom.2004.11.004
12 GaoD,ZhangC,WangS,YuanZ, WangS. Catalytic activity of Pd/Al2O3 toward the combustion of methane. Catalysis Communications, 2008, 9(15): 2583–2587
doi: 10.1016/j.catcom.2008.07.014
13 KurzinaI, Cadete Santos AiresF J, BergeretG, BertoliniJ C. Total oxidation of methane over Pd catalysts supported on silicon nitride: Influence of support nature. Chemical Engineering Journal, 2005, 107(1–3): 45–53
doi: 10.1016/j.cej.2004.12.009
14 GarbowskiE, Feumi-JantouC, MouaddibN, PrimetM. Catalytic combustion of methane over palladium supported on alumina catalysts: Evidence for reconstruction of particles. Applied Catalysis A: General, 1994, 109(2): 277–291
doi: 10.1016/0926-860X(94)80124-X
15 ShiC, YangL, WangZ, HeX,CaiJ, LiG, WangX. Promotion effects of ZrO2 on the Pd/HZSM-5 catalyst for low-temperature catalytic combustion of methane. Applied Catalysis A: General, 2003, 243(2): 379–388
doi: 10.1016/S0926-860X(02)00594-X
16 XiaoL, SunK, XuX, LiX. Low-temperature catalytic combustion of methane over Pd/CeO2 prepared by deposition–precipitation method. Catalysis Communications, 2005, 6(12): 796–801
doi: 10.1016/j.catcom.2005.07.015
17 LapisardiG, UrfelsL, GelinP, PrimetM, KaddouriA, GarbowskiE, ToppiS, TenaE. Superior catalytic behaviour of Pt-doped Pd catalysts in the complete oxidation of methane at low temperature. Catalysis Today, 2006, 117(4): 564–568
doi: 10.1016/j.cattod.2006.06.004
18 ZhouR, ZhaoB, YueB. Effects of CeO2-ZrO2 present in Pd/Al2O3 catalysts on the redox behavior of PdOx and their combustion activity. Applied Surface Science, 2008, 254(15): 4701–4707
doi: 10.1016/j.apsusc.2008.01.075
19 WangX, GuoY, LuG, HuY, JiangL, GuoY, ZhangZ. An excellent support of Pd catalyst for methane combustion: Thermal-stable Si-doped alumina. Catalysis Today, 2007, 126(3–4): 369–374
doi: 10.1016/j.cattod.2007.06.011
20 YasudaK, MasuiT, MiyamotoT, ImanakaN. Catalytic combustion of methane over Pt and PdO-supported CeO2-ZrO2-Bi2O3/γ-Al2O3 catalysts. Journal of Materials Science, 2011, 46(11): 4046–4052
doi: 10.1007/s10853-011-5333-y
21 DemoulinO, SeunierI, NavezM, RuizP. Influence of the addition of H2 upon the behavior and properties of a Pd(2wt.%)/γ-Al2O3 catalyst and a comparison with the case of the Pt-based catalyst. Applied Catalysis A: General, 2006, 300(1): 41–49
doi: 10.1016/j.apcata.2005.10.046
22 OttoK, HaackL P, deVriesJ E. Identification of two types of oxidized palladium on γ-alumina by X-ray photoelectron spectroscopy. Applied Catalysis B: Environmental, 1992, 1(1): 1–12
doi: 10.1016/0926-3373(92)80003-I
23 YazawaY, YoshidaH, TakagiN, KomaiS I, SatsumaA, HattoriT. Oxidation state of palladium as a factor controlling catalytic activity of Pd/SiO2-Al2O3 in propane combustion. Applied Catalysis B: Environmental, 1998, 19(3–4): 261–266
doi: 10.1016/S0926-3373(98)00080-0
24 HuL, PengQ, LiY. Low-temperature CH4 catalytic combustion over Pd catalyst supported on Co3O4 nanocrystals with well-defined crystal planes. ChemCatChem, 2011, 3(5): 868–874
doi: 10.1002/cctc.201000407
25 SekizawaK, WidjajaH, MaedaS, OzawaY, EguchiK. Low temperature oxidation of methane over Pd catalyst supported on metal oxides. Catalysis Today, 2000, 59(1–2): 69–74
doi: 10.1016/S0920-5861(00)00273-X
26 FujimotoK I, RibeiroF H, Avalos-BorjaM, IglesiaE. Structure and reactivity of PdOx/ZrO2 catalysts for methane oxidation at low temperatures. Journal of Catalysis, 1998, 179(2): 431–442
doi: 10.1006/jcat.1998.2178
[1] Ying Xu, Hui Gong, Xiaohu Dai. High-solid anaerobic digestion of sewage sludge: achievements and perspectives[J]. Front. Environ. Sci. Eng., 2021, 15(4): 71-.
[2] Mona Akbar, Muhammad Farooq Saleem Khan, Ling Qian, Hui Wang. Degradation of polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 98-.
[3] Chao Pang, Chunhua He, Zhenhu Hu, Shoujun Yuan, Wei Wang. Aggravation of membrane fouling and methane leakage by a three-phase separator in an external anaerobic ceramic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2019, 13(4): 50-.
[4] Yuzhou Deng, Shengpan Peng, Haidi Liu, Shuangde Li, Yunfa Chen. Mechanism of dichloromethane disproportionation over mesoporous TiO2 under low temperature[J]. Front. Environ. Sci. Eng., 2019, 13(2): 21-.
[5] Alvyn P. Berg, Ting-An Fang, Hao L. Tang. Unlocked disinfection by-product formation potential upon exposure of swimming pool water to additional stimulants[J]. Front. Environ. Sci. Eng., 2019, 13(1): 10-.
[6] Yi Chen, Shilong He, Mengmeng Zhou, Tingting Pan, Yujia Xu, Yingxin Gao, Hengkang Wang. Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(5): 13-.
[7] Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang. Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow biofilm reactor with conductive granular graphite fillers[J]. Front. Environ. Sci. Eng., 2018, 12(4): 13-.
[8] Bai-Hang Zhao, Jie Chen, Han-Qing Yu, Zhen-Hu Hu, Zheng-Bo Yue, Jun Li. Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: Hyacinth as an example[J]. Front. Environ. Sci. Eng., 2017, 11(6): 17-.
[9] Yulun Nie, Xike Tian, Zhaoxin Zhou, Yu-You Li. Impact of food to microorganism ratio and alcohol ethoxylate dosage on methane production in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2017, 11(6): 6-.
[10] Takashi Osada, Makoto Shiraishi, Teruaki Hasegawa, Hirofumi Kawahara. Methane, Nitrous Oxide and Ammonia generation in full-scale swine wastewater purification facilities[J]. Front. Environ. Sci. Eng., 2017, 11(3): 10-.
[11] Chong Liu, Jianzheng Li, Shuo Wang, Loring Nies. A syntrophic propionate-oxidizing microflora and its bioaugmentation on anaerobic wastewater treatment for enhancing methane production and COD removal[J]. Front. Environ. Sci. Eng., 2016, 10(4): 13-.
[12] Min GOU,Jing ZENG,Huizhong WANG,Yueqin TANG,Toru SHIGEMATSU,Shigeru MORIMURA,Kenji KIDA. Microbial community structure and dynamics of starch-fed and glucose-fed chemostats during two years of continuous operation[J]. Front. Environ. Sci. Eng., 2016, 10(2): 368-380.
[13] Yuyao ZHANG,Huan LI,Can LIU,Yingchao CHENG. Influencing mechanism of high solid concentration on anaerobic mono-digestion of sewage sludge without agitation[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1108-1116.
[14] Roberta DYCK,Geneviève COOL,Manuel RODRIGUEZ,Rehan SADIQ. Treatment, residual chlorine and season as factors affecting variability of trihalomethanes in small drinking water systems[J]. Front. Environ. Sci. Eng., 2015, 9(1): 171-179.
[15] Xiaomao WANG,Garcia Leal M I,Xiaolu ZHANG,Hongwei YANG,Yuefeng XIE. Haloacetic acids in swimming pool and spa water in the United States and China[J]. Front. Environ. Sci. Eng., 2014, 8(6): 820-824.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed