Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2014, Vol. 8 Issue (6) : 945-951    https://doi.org/10.1007/s11783-013-0615-z
RESEARCH ARTICLE
A potentiometric cobalt-based phosphate sensor based on screen-printing technology
Lei ZHU1,Xiaohong ZHOU1,2,Hanchang SHI1,*()
1. School of Environment, Tsinghua University, Beijing 100084, China
2. Division of Ecology and Environment, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
 Download: PDF(263 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A potentiometric cobalt-based screen-printing sensor was fabricated by electroplating cobalt on the surface of a screen-printing electrode as the sensitive layer for the determination of dihydrogenphosphate (H2PO4-) in wastewater samples. The electrochemical performance of this sensor was fully examined to determine its detection calibration, detection limit, response time, selectivity, and interference with pH, various ions, and dissolved oxygen (DO). The cobalt-based phosphate sensor showed a phosphate-selective potential response in the range of 10-5 mol·L-1 to 10-1 mol·L-1, yielding a detection limit of 3.16 × 10-6 mol?L-1and a slope of -37.51 mV?decade-1 in an acidic solution (pH 4.0) of H2PO4-. DO and pH were found to interfere with sensor responses to phosphate. Ultimately, the performance of the sensor was validated for detecting wastewater samples from the Xiaojiahe Wastewater Treatment Plant against the standard spectrophotometric methods for H2PO4- analysis. The discrepancy between the two methods was generally ±5% (relative standard deviation). Aside from its high selectivity, sensitivity, and stability, which are comparable with conventional bulk Co-wire sensors, the proposed phosphate sensor presents many other advantages, such as low price, compactness, ease of use, and the possibility of integration with other analytical devices, such as flow injectors.

Keywords phosphate      cobalt      screen-printing technology      electroplate      wastewater     
Corresponding Author(s): Hanchang SHI   
Online First Date: 17 December 2013    Issue Date: 17 November 2014
 Cite this article:   
Lei ZHU,Xiaohong ZHOU,Hanchang SHI. A potentiometric cobalt-based phosphate sensor based on screen-printing technology[J]. Front. Environ. Sci. Eng., 2014, 8(6): 945-951.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0615-z
https://academic.hep.com.cn/fese/EN/Y2014/V8/I6/945
Fig.1  Photograph of the individual phosphate electroplating sensor
Fig.2  Potentiometric response of the phosphate electroplating sensor in different concentrations of KH2PO4 at pH 4.0
Fig.3  Potentiometric responses of three different batches of phosphate electroplating sensors in 10-4 mol·L-1 KH2PO4 at pH 4.0
Fig.4  Potentiometric responses of three different batches of phosphate electroplating sensors in 10-4 mol·L-1 KH2PO4 at pH 4.0
Fig.5  (a) Relationship between the potentiometric response of the phosphate electroplating sensor and the DO concentration in 10-4 mol·L-1 KH2PO4 solution at pH 4.0. (b) The calibration curves of the phosphate electroplating sensor with DO= 3 mg·L-1and 4 mg·L-1
Fig.6  pH calibration curve of the phosphate electroplating sensor in 10-4 mol·L-1 KH2PO4 solution
ion reagent range for measurement/(mol·L-1) selectivity coefficient ionic strength
Cl- KCl 5 × 10-2 5 × 10-3 5 × 10-4 2 × 10-3 3 × 10-3
N O 3 - NaNO3 5 × 10-3 5 × 10-4 5 × 10-5 1.5 × 10-3 1 × 10-3
S O 4 2 - K2SO4 5 × 10-3 5 × 10-4 5 × 10-5 8 × 10-4 2 × 10-3
C H 3 C O O - CH3COONa 5 × 10-3 5 × 10-4 5 × 10-5 4.5 × 10-4 2 × 10-3
Tab.1  Ion concentration range, selectivity coefficient, and ionic strength for ion interference evaluation
sample SPE method (uncorrected) results/(mg·L-1) standard method results /(mg·L-1) Max relative error/%
1 4.06 4.12 4.27 3.76 13.6
2 3.28 3.19 3.14 2.59 26.6
3 3.17 3.29 3.19 2.85 15.4
4 3.27 3.41 3.31 2.62 30.2
5 4.09 4.23 4.32 3.45 25.2
Tab.2  Determination of phosphate in wastewater samples (effluents from the primary settling tank) from Xiaojiahe wastewater treatment plant
ion concentration/(mg·L-1)
Cl- N O 3 - S O 4 2 - C H 3 C O O -
89.33 7.28 104.31 12.46
Tab.3  The concentrations of the four ions in the effluent from the primary settling tank of Xiaojiahe wastewater treatment plant
sample SPE method (uncorrected) results/(mg·L-1) standard method results /(mg·L-1) Max relative error/%
1 3.58 3.68 3.56 3.76 5.3
2 2.75 2.53 2.78 2.59 7.3
3 2.71 2.76 2.84 2.85 4.9
4 2.78 2.66 2.72 2.62 6.1
5 3.54 3.41 3.65 3.45 5.8
Tab.4  Corrected determination of phosphate in wastewater samples (effluents from the primary settling tank) from Xiaojiahe wastewater treatment plant
1 Engblom S O. The phosphate sensor. Biosensors and Bioelectronics, 1998, 13(9): 981–994
https://doi.org/10.1016/S0956-5663(98)00001-3 pmid: 9839387
2 Storer R A. In: Annual Book of ASTM standard, American Society for Testing and Materials: West Conshohocken, 1996, 1: 24–27
3 Carey C M. Association constant for potassium-acid-phosphate determined by K and HPO4 ion-selective electrodes. Journal of Dental Research, 1997, 76: 668–668
4 Liu D, Chen W C, Yang R H, Shen G L, Yu R Q. Yang R H, Shen G L, Yu R Q. Polymeric membrane phosphate sensitive electrode based on binuclear organotin compound. Analytica Chimica Acta, 1997, 338(3): 209–214
https://doi.org/10.1016/S0003-2670(96)00382-0
5 de Marco R, Phan C. Determination of phosphate in hydroponic nutrient solutions using flow injection potentiometry and a cobalt-wire phosphate ion-selective electrode. Talanta, 2003, 60(6): 1215–1221
https://doi.org/10.1016/S0039-9140(03)00229-7 pmid: 18969148
6 Engblom S O. Determination of inorganic phosphate in a soil extract using a cobalt electrode. Plant and Soil, 1999, 206(2): 173–179
https://doi.org/10.1023/A:1004451308787
7 Xiao D, Yuan H Y, Li J, Yu R Q. Surface-modified coalt-based sensor as a phosphate-sensitive electorde. Analytical Chemistry, 1995, 67(2): 288–291
https://doi.org/10.1021/ac00098a009
8 Chen Z, MarcoD R, Alexander P W. Flow-injection potentiometric detection of phosphates using a metallic cobalt wire ion-selective electrode. Analytical Communications, 1997, 34(3): 93–95
https://doi.org/10.1039/a700771j
9 Zou Z W, Han J Y, Jang A, Bishop P L, Ahn C H. A disposable on-chip phosphate sensor with planar cobalt microelectrodes on polymer substrate. Biosensors and Bioelectronics, 2007, 22(9–10): 1902–1907
https://doi.org/10.1016/j.bios.2006.08.004 pmid: 16979886
10 Fanjul-Bolado P, Queipo P, Lamas-Ardisana P J, Costa-García A. Manufacture and evaluation of carbon nanotube modified screen-printed electrodes as electrochemical tools. Talanta, 2007, 74(3): 427–433
https://doi.org/10.1016/j.talanta.2007.07.035 pmid: 18371659
11 Avramescu A, Andreescu S, Noguer T, Bala C, Andreescu D, Marty J L. Biosensors designed for environmental and food quality control based on screen-printed graphite electrodes with different configurations. Analytical and Bioanalytical Chemistry, 2002, 374(1): 25–32
https://doi.org/10.1007/s00216-002-1312-0 pmid: 12207236
12 Tymecki L, Glab S, Koncki R. Miniaturized, Planar ion-selective electrodes fabricated by means of thick-film technology. Sensors (Basel, Switzerland), 2006, 6(4): 390–396
https://doi.org/10.3390/s6040390
13 Albareda-Sirvent M, Merkoci A, Alegret S. Configurations used in the design of screen-printed enzymatic biosensors. A review. Sensors and Actuators. B, Chemical, 2000, 69(1–2): 153–163
https://doi.org/10.1016/S0925-4005(00)00536-0
14 Shih Y, Zen J M, Kumar A S, Chen P Y. Flow injection analysis of zinc pyrithione in hair care products on a cobalt phthalocyanine modified screen-printed carbon electrode. Talanta, 2004, 62(5): 912–917
https://doi.org/10.1016/j.talanta.2003.10.039 pmid: 18969379
15 Martinez N A, Messina G A, Bertolino F A, Salinas E, Raba J. Screen-printed enzymatic biosensor modified with carbon nanotube for the methimazole determination in pharmaceuticals formulations. Sensors and Actuators. B: Chemical, 2008, 133(1): 256–262
https://doi.org/10.1016/j.snb.2008.02.025
16 Meruva R K, Meyerhoff M E. Mixed potential response mechanism of cobalt electrodes toward inorganic phosphate. Analytical Chemistry, 1996, 68(13): 2022–2026
https://doi.org/10.1021/ac951086v pmid: 9027219
17 Tymecki L, Zwierkowska Z, Koncki R. Screen-printed reference electrodes for potentiometric measurements. Analytica Chimica Acta, 2004, 526(1): 3–11
https://doi.org/10.1016/j.aca.2004.08.056
18 Littmann E R, Klotz J R M. Naphthenic acids II Manufacture, properties, and uses. Chemical Reviews, 1942, 30(1): 97–111
https://doi.org/10.1021/cr60095a005
19 Marco D R, Pejcic B, Chen Z. Flow injection potentiometric determination of phosphate in waste waters and fertilisers using a cobalt wire ion-selective electrode. Analyst (London), 1998, 123(7): 1635–1640
https://doi.org/10.1039/a801244j
20 Fry C H, Langley S E M. Ion-selective Electrodes for Biological Systems. Amsterdam: Harwood Academic, 2001
[1] Tao Liu, Yudong Song, Zhiqiang Shen, Yuexi Zhou. Inhibition character of crotonaldehyde manufacture wastewater on biological acidification[J]. Front. Environ. Sci. Eng., 2021, 15(6): 119-.
[2] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[3] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[4] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[5] Byungjin Lee, Eun Seo Jo, Dong-Wha Park, Jinsub Choi. Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing non-degradable organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(5): 90-.
[6] Haoran Feng, Min Liu, Wei Zeng, Ying Chen. Optimization of the O3/H2O2 process with response surface methodology for pretreatment of mother liquor of gas field wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 78-.
[7] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[8] Safaa M. Ezzat, Mohammed T. Mohammed T.. Treating wastewater under zero waste principle using wetland mesocosms[J]. Front. Environ. Sci. Eng., 2021, 15(4): 59-.
[9] Tianhao Xi, Xiaodan Li, Qihui Zhang, Ning Liu, Shu Niu, Zhaojun Dong, Cong Lyu. Enhanced catalytic oxidation of 2,4-dichlorophenol via singlet oxygen dominated peroxymonosulfate activation on CoOOH@Bi2O3 composite[J]. Front. Environ. Sci. Eng., 2021, 15(4): 55-.
[10] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[11] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
[12] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[13] Dawei Yu, Jianxing Wang, Libin Zheng, Qianwen Sui, Hui Zhong, Meixue Cheng, Yuansong Wei. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(6): 101-.
[14] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[15] Shengkun Dong, Chenyue Yin, Xiaohong Chen. Toxicity-oriented water quality engineering[J]. Front. Environ. Sci. Eng., 2020, 14(5): 80-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed