Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2014, Vol. 8 Issue (6) : 952-959    https://doi.org/10.1007/s11783-013-0619-8
RESEARCH ARTICLE
Reuse of heavy metal-accumulating Cynondon dactylon in remediation of water contaminated by heavy metals
Dongdong MA,Hongwen GAO()
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
 Download: PDF(585 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Phytoremediation technology is regarded as a simple and efficient way to remove heavy metals from contaminated soil. A reasonable disposal of metal hyperaccumulators is always a major issue in waste reuse and resource-saving. The heavy metal-accumulating Cynondon dactylon (L.) was investigated where heavy metals were desorbed by a facile acid-treatment. The result indicated that more than 90% of heavy metals (Zn, Pb and Cu) was extracted from Cynondon dactylon with 0.2 mmol·L-1 HCl. The plant residue was used to adsorb heavy metals ions. The adsorption fitted the Langmuir isotherm model with the saturation adsorption capacity of 9.5 mg·g-1 Zn2+, 36.2 mg·g-1 Pb2+ and 12.9 mg·g-1 Cu2+, and the surface complexation and the backfilling of heavy metal-imprinting cavities existed simultaneously during the adsorption. The treatment of wastewaters indicated that the plant residue exhibited a high removal rate of 97% for Cu. Also, the material could be recycled. The method offers a new disposal approach for heavy metal hyperaccumulator.

Keywords heavy metals      Cynondon dactylon      acid-treatment      adsorption      recycling     
Corresponding Author(s): Hongwen GAO   
Online First Date: 17 December 2013    Issue Date: 17 November 2014
 Cite this article:   
Dongdong MA,Hongwen GAO. Reuse of heavy metal-accumulating Cynondon dactylon in remediation of water contaminated by heavy metals[J]. Front. Environ. Sci. Eng., 2014, 8(6): 952-959.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0619-8
https://academic.hep.com.cn/fese/EN/Y2014/V8/I6/952
Fig.1  Schematic illustration for acid-treatment of Cynondon dactylon and its reuse. (a) heavy metals-hyperaccumulating Cynondon dactylon growing in the heavy metal-contaminated soil; (b) distribution and binding of heavy metals in plant tissue; (c) acid-treatment for removing heavy metals and then leaving the metal-imprinting cavities; (d) adsorbing and backfilling of heavy metals onto the acid-treatment material and its recycling
Fig.2  Influences of acidity (a), solid-liquid ratio (b) and time (c) on release of heavy metals from RCD. (a) 1- Zn, 2- Pb and 3- Cu; (b) and (c) 1- Zn+2, 2- Pb+2 and 3- Cu+2 existed in the supernatants
Fig.3  Infrared spectra of RCD (1), ATCD (2) and ATCD adsorbing Zn (3)
Fig.4  Adsorption of heavy metal ions (Zn2+, Pb2+ and Cu2+) to RCD (2) and ATCD (3). (a): Single metal ions solution; (b): The solution mixed with heavy metals. 1- initial concentration, 2- after adsorption with RCD and 3- after adsorption with ATCD
Fig.5  Adsorption of heavy metals ions on ATCD. (a) plots qe vs. C0 and (b) plots Ce/qe vs. Ce. 1- Zn2+, 2- Pb2+ and 3- Cu2+
Fig.6  Effects of pH (a) and connect time (b) on adsorption of heavy metals ions on ATCD. 0.100 to 0.1 g of ATCD was added to 10 mL of 100 mg·L-1 Zn2+ (1), 100 mg·L-1 Pb2+ (2) or 100 mg·L-1 Cu2+ (3), respectively
Fig.7  Two copper wastewater samples were treated. (a) Cu2+ in the raw wastewater (1) and its supernatants treated with RCD (2) and ATCD (3); (b) Cu2+ in the raw wastewater (m) (10 mL) and its supernatants treated with ATCD (0.20 to 0.2 g) for four cycle (2 to 4)
1 Chehregani A, Noori M, Yazdi H L. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Ecotoxicology and Environmental Safety, 2009, 72(5): 1349–1353
https://doi.org/10.1016/j.ecoenv.2009.02.012
2 Ali H, Khan E, Sajad M A. Phytoremediation of heavy metals-concepts and applications. Chemosphere, 2013, 91(7): 869–881
https://doi.org/10.1016/j.chemosphere.2013.01.075
3 Lado L R, Hengl T, Reuter H I. Heavy metals in European soils: a geostatistical analysis of the FOREGS Geochemical database. Geoderma, 2008, 148(2): 189–199
https://doi.org/10.1016/j.geoderma.2008.09.020
4 Shah K, Dubey R S. A 18 kDa cadmium inducible protein complex: its isolation and characterization from rice (Oryza sativa L.) seedlings. Plant Physiology, 1998, 152(4–5): 448–454
https://doi.org/10.1016/S0176-1617(98)80262-9
5 Agrawal V, Sharma K. Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysentrica. Biologia Plantarum, 2006, 50(2): 307–310
https://doi.org/10.1007/s10535-006-0027-z
6 Cheng S P. Heavy metal pollution in China: origin, pattern and control–a state-of-the-art report with special reference to literature published in Chinese journals. Environmental Science and Pollution Research International, 2003, 10(3): 192–198
https://doi.org/10.1065/espr2002.11.141.1
7 Wang Q R, Cui Y S, Liu X M, Dong Y T, Christie P. Soil contamination and plant uptake of heavy metals at polluted sites in China. Journal of Environment Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering, 2003, 38: 823–838
https://doi.org/10.1081/ESE-120018594
8 Wu S, Xia X H, Lin C Y, Chen X, Zhou C H. Levels of arsenic and heavy metals in the rural soils of Beijing and their changes over the last two decades (1985–2008). Journal of Hazardous Materials, 2010, 179(1–3): 860–868
https://doi.org/10.1016/j.jhazmat.2010.03.084
9 Chen Y Y, Wang J, Gao W, Sun X J, Xu S Y. Comprehensive analysis of heavy metals in soils from Baoshan District, Shanghai: a heavily industrialized area in China. Environmental Earth Sciences, 2012, 67(8): 2331–2343
https://doi.org/10.1007/s12665-012-1680-5
10 Cui Z A, Qiao S Y, Bao Z Y, Wu N Y. Contamination and distribution of heavy metals in urban and suburban soils in Zhangzhou City, Fujian, China. Environmental Earth Sciences, 2011, 64(6): 1607–1615
https://doi.org/10.1007/s12665-011-1179-5
11 Lu C A, Zhang J F, Jiang H M, Yang J C, Zhang J T, Wang J Z, Shan H X. Assessment of soil contamination with Cd, Pb and Zn and source identification in the area around the Huludao Zinc Plant. Journal of Hazardous Materials, 2010, 182(1–3): 743–748
https://doi.org/10.1016/j.jhazmat.2010.06.097
12 Shi G T, Chen Z L, Xu S Y, Zhang J, Wang L, Bi C J, Teng J Y. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environmental Pollution, 2008, 156(2): 251–260
https://doi.org/10.1016/j.envpol.2008.02.027
13 Argun M E, Dursun S. A new approach to modification of natural adsorbent for heavy metal adsorption. Bioresource Technology, 2008, 99(7): 2516–2527
https://doi.org/10.1016/j.biortech.2007.04.037
14 Meagher R B. Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biology, 2000, 3(2): 153–162
https://doi.org/10.1016/S1369-5266(99)00054-0
15 Gisbert C, Ros R, de Haro A, Walker D J, Pilar Bernal M, Serrano R, Navarro-Avi?ó J. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochemical and Biophysical Research Communications, 2003, 303(2): 440–445
https://doi.org/10.1016/S0006-291X(03)00349-8
16 Rascio N, Navari-Izzo F. Heavy metal hyperaccumulating plants: How and why do they do it? and What makes them so interesting? Plant Science, 2011, 180(2): 169–181
https://doi.org/10.1016/j.plantsci.2010.08.016
17 Baker A J M, McGrath S P, Sidoli C M D, Reeves R D. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation and Recycling, 1994, 11(1–4): 41–49
https://doi.org/10.1016/0921-3449(94)90077-9
18 Chen T B, Wei C Y. Arsenic hyperaccumulator in some plant species in South China. In: Proceedings of International Conference on Soil Remediation. Hangzhou China, 2000, 194–195
19 Broadhurst C L, Chaney R L, Angle J S, Erbe E F, Maugel T K. Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale. Plant and Soil, 2004, 265(1–2): 225–242
https://doi.org/10.1007/s11104-005-0974-8
20 Yang X E, Long X X, Ye H B, He Z L, Calvert D V, Stoffella P J. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil, 2004, 259(1/2): 181–189
https://doi.org/10.1023/B:PLSO.0000020956.24027.f2
21 Tang Y T, Qiu R L, Zeng X W, Ying R R, Yu F M, Zhou X Y. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environmental and Experimental Botany, 2009, 66(1): 126–134
https://doi.org/10.1016/j.envexpbot.2008.12.016
22 Brown S L, Chaney R L, Angle J S, Baker A J M. Zinc and cadmium uptake by hyperaccumulator Thlaspi-caerulescens and metal-tolerant Silene-vulgaris grown on sludge-amended soils. Environmental Science and Technology, 1995, 29(6): 1581–1585
https://doi.org/10.1021/es00006a022
23 Kr?mer U. Phytoremediation: novel approaches to cleaning up polluted soils. Current Opinion in Biotechnology, 2005, 16(2): 133–141
https://doi.org/10.1016/j.copbio.2005.02.006
24 Salt D E, Prince R C, Baker A J M, Raskin I, Pickering I J. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environmental Science and Technology, 1999, 33(5): 713–717
https://doi.org/10.1021/es980825x
25 Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 2001, 212(4): 475–486
https://doi.org/10.1007/s004250000458
26 McGrath S P, Zhao F J. Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 2003, 14(3): 277–282
https://doi.org/10.1016/S0958-1669(03)00060-0
27 Verbruggen N, Hermans C, Schat H. Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 2009, 181(4): 759–776
https://doi.org/10.1111/j.1469-8137.2008.02748.x
28 Karthik D, Ravikumar S. A study on the protective effect of Cynodon dactylon leaves extract in diabetic rats. Biomedical and Environmental Sciences, 2011, 24(2): 190–199
https://doi.org/10.3967/0895-3988.2011.02.014
29 Garbisu C, Alkorta I. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 2001, 77(3): 229–236
https://doi.org/10.1016/S0960-8524(00)00108-5
30 Ajmal M, Ali Khan Rao R, Anwar S, Ahmad J, Ahmad R. Adsorption studies on rice husk: removal and recovery of Cd (II) from wastewater. Bioresource Technology, 2003, 86(2): 147–149
https://doi.org/10.1016/S0960-8524(02)00159-1
31 Farooq U, Kozinski J A, Khan M A, Athar M. Biosorption of heavy metal ions using wheat based biosorbents–a review of the recent literature. Bioresource Technology, 2010, 101(14): 5043–5053
https://doi.org/10.1016/j.biortech.2010.02.030
32 Zhao X T, Zeng T, Li X Y, Hu Z J, Gao H W, Xie Z. Modeling and mechanism of the adsorption of copper ion onto natural bamboo sawdust. Carbohydrate Polymers, 2012, 89(1): 185–192
https://doi.org/10.1016/j.carbpol.2012.02.069
33 Al-Degs Y S, El-Barghouthi M I, Issa A A, Khraisheh M A, Walker G M. Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies. Water Research, 2006, 40(14): 2645–2658
https://doi.org/10.1016/j.watres.2006.05.018
34 Chaney R L, Malik M, Li Y M, Brown S L, Brewer E P, Angle J S, Baker A J M. Phytoremediation of soil metals. Current Opinion in Biotechnology, 1997, 8(3): 279–284
https://doi.org/10.1016/S0958-1669(97)80004-3
35 Matheickal J T, Yu Q M. Biosorption of lead (II) and copper (II) from aqueous solutions by pre-treated biomass f Australian marine algae. Bioresource Technology, 1999, 69(3): 223–229
https://doi.org/10.1016/S0960-8524(98)00196-5
36 Shukla S R, Pai R S. Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres. Bioresource Technology, 2005, 96(13): 1430–1438
https://doi.org/10.1016/j.biortech.2004.12.010
37 Wan Ngah W S, Hanafiah M A K M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresource Technology, 2008, 99(10): 3935–3948
https://doi.org/10.1016/j.biortech.2007.06.011
38 Fones H, Davis C A R, Rico A, Fang F, Smith J A C, Preston G M. Metal hyperaccumulation armors plants against disease. PLoS Pathogens, 2010, 6(9): e1001093
https://doi.org/10.1371/journal.ppat.1001093
39 Nie F H. New comprehensions of hyperaccumulator. Ecologcal Environment, 2005, 14(1): 136–138 (In chinese)
https://doi.org/1672-2175(2005)14:1<136:GYCFJZ>2.0.TX;2-8
40 Parida S K, Dash S, Patel S, Mishra B K. Adsorption of organic molecules on silica surface. Advances in Colloid and Interface Science, 2006, 121(1–3): 77–110
https://doi.org/10.1016/j.cis.2006.05.028
41 Gao H W, Ma D D, Xu G. Medicinal plant acid-treatment for a healthier herb tea and recycling of the spent herb residue. RSC Advances, 2012, 2(14): 5983–5989
https://doi.org/10.1039/c2ra20429k
42 Saygideger S, Gulnaz O, Istifli E S, Yucel N. Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: effect of physicochemical environment. Journal of Hazardous Materials, 2005, 126(1–3): 96–104
https://doi.org/10.1016/j.jhazmat.2005.06.012
43 Radeti? M M, Joci? D M, Jovan?i? P M, Petrovi? Z L J, Thomas H F. Recycled wool–based nonwoven material as an oil sorbent. Environmental Science and Technology, 2003, 37(5): 1008–1012
https://doi.org/10.1021/es0201303
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Ting Chen, Yingying Zhao, Xiaopeng Qiu, Xiaoyan Zhu, Xiaojie Liu, Jun Yin, Dongsheng Shen, Huajun Feng. Economics analysis of food waste treatment in China and its influencing factors[J]. Front. Environ. Sci. Eng., 2021, 15(2): 33-.
[4] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[5] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[6] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[7] Wenbing Tan, Dongyu Cui, Xiaohui Zhang, Beidou Xi. Region-gridding recycling of bulk organic waste: Emerging views based on coordinated urban and rural development[J]. Front. Environ. Sci. Eng., 2020, 14(6): 112-.
[8] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[9] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[10] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[11] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[12] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[13] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[14] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[15] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed