Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (2) : 206-215    https://doi.org/10.1007/s11783-014-0631-7
RESEARCH ARTICLE
Fabrication, characterization and evaluation of mesoporous activated carbons from agricultural waste: Jerusalem artichoke stalk as an example
Lei YU1,2,3,Chen TU2,Yongming LUO1,2,*()
1. Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
2. Key Laboratory of Coastal Zone Environmental Processes, Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
3. Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China
 Download: PDF(565 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This work explores the feasibility of Jerusalem artichoke stem (JAS), an agricultural waste, as an alternative precursor for fabrication of mesoporous activated carbon (MAC) via conventional ZnCl2 activation. The as-prepared JAS-MACs were characterized by thermogravimetric, nitrogen gas adsorption isotherm and high resolution scanning electron microscopy analysis. The interacting effects of chemical dosage, activation temperature and time on the mesoporosity, mesopore volume and carbon yield were investigated, and further optimized by response surface methodology (RSM). The Brunauer-Emmett-Teller surface area, mesoporosity and mesopore volume of the JAS-MAC prepared under optimum condition were identified to be 1631 m2·g-1, 90.16% and 1.11 cm3·g-1, respectively. Compared with commercial activated carbons, this carbon exhibited a comparable monolayer adsorption capacity of 374.5 mg·g-1 for Methylene Blue dye. The findings suggest that RSM could be an effective approach for optimizing the pore structure of fabricated activated carbons.

Keywords mesoporous activated carbon      response surface methodology      adsorption isotherm      agricultural wastes     
Corresponding Author(s): Yongming LUO   
Online First Date: 07 January 2014    Issue Date: 13 February 2015
 Cite this article:   
Lei YU,Chen TU,Yongming LUO. Fabrication, characterization and evaluation of mesoporous activated carbons from agricultural waste: Jerusalem artichoke stalk as an example[J]. Front. Environ. Sci. Eng., 2015, 9(2): 206-215.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0631-7
https://academic.hep.com.cn/fese/EN/Y2015/V9/I2/206
run independent variables responses
x1 x2 x3 X1 X2 X3 Y1 Y2 Y3
1 1 0 1 4.0 600 3 93.1 1.359 33.0
2 1 1 0 4.0 800 2 89.2 1.151 35.0
3 0 0 0 2.5 600 2 90.4 0.933 35.5
4 0 1 1 2.5 800 3 76.7 0.629 31.0
5 -1 0 -1 1.0 600 1 14.2 0.121 38.5
6 0 0 0 2.5 600 2 89.9 0.952 34.0
7 -1 1 0 1.0 800 2 11.4 0.074 35.5
8 -1 -1 0 1.0 400 2 23.3 0.200 44.0
9 0 -1 -1 2.5 400 1 59.5 0.452 43.5
10 0 1 -1 2.5 800 1 82.7 0.811 32.0
11 0 0 0 2.5 600 2 89.6 0.941 36.0
12 1 0 -1 4.0 600 1 94.7 1.544 34.0
13 -1 0 1 1.0 600 3 18.6 0.129 36.5
14 0 -1 1 2.5 400 3 70.3 0.640 38.5
15 1 -1 0 4.0 400 2 77.2 0.672 34.5
Tab.1  Box-Behnken design matrix and experimental results
Fig.1  3D surface graphs and contour plots of mesopore ratio showing the effect of (a) x1-x2, (b) x1-x3, (c) x2-x3
Fig.2  Overlay plot for optimal region
T/K Langmuir model Freundlich model Temkin model
Qm/(mg·g-1) KL/(L·mg-1) RL R2 KF/(mg·g-1) 1/n R2 A/(L·g-1) B R2
293 363.6 1.004 0.010 0.999 220.4 0.114 0.963 884.2 32.3 0.987
303 373.1 0.450 0.022 0.998 194.2 0.141 0.914 155.9 38.08 0.950
313 374.5 0.536 0.018 0.999 200.4 0.136 0.924 217.8 37.22 0.964
323 354.6 1.424 0.007 0.999 209.7 0.118 0.801 849.8 31.59 0.874
Tab.2  Langmuir, Freundlich, and Temkin isotherm constants of MB adsorption onto JAS-MAC
Fig.3  Isotherm plots for the adsorption of MB onto JAS-MAC (a) Langmuir isotherm (b) Freundlich isotherm, and (c) Temkin isotherm
C0 /(mg·L-1) qe,exp /(mg·g-1) Pseudo-first order Pseudo-second order intra-particle diffusion
qe,cal /(mg·g-1) k1 /min-1 R2 qe,cal /(mg·g-1) k2/(g·mg-1·min-1) R2 ki/(mg·g-1·h-1/2) C /(mg·g-1) R2
100 243.6 228.6 0.034 0.920 239.1 1.647 0.961 18.35 35.58 0.993
150 335.4 310.4 0.054 0.930 327.5 2.176 0.979 27.33 71.26 0.983
200 374.5 351.1 0.049 0.937 369.8 1.678 0.978 28.65 80.17 0.976
Tab.3  Kinetic parameters for the adsorption of MB onto JAS-MAC
Fig.4  Intra-particle diffusion plots for MB adsorption onto JAS-MAC
precursor activating agent BET surface area /(m2·g-1) total Pore volume /(cm3·g-1) mesoporous pore volume /(cm3·g-1) qm /(mg·L-1) reference
Jerusalem artichoke stalk ZnCl2 1631 1.22 1.10 374.5 present study
Piassava fibers ZnCl2 1190 0.47 0.01 276.4 [23]
rice straw (NH4)2PO4 1154 0.67 0.23 129.5 [40]
durian peel CO2 1015 0.66 NA 284.0 [41]
Pistachio nut shell KOH 700 0.38 296.6 [41]
rice straw H3PO4 790 0.48 0.18 107.1 [43]
Camellia oleifera shell H3PO4 1608 1.17 0.95 330.0 [44]
cotton stalk H3PO4 652 0.48 0.42 245.7 [7]
commercial powdered AC 1410 0.81 0.59 294.1 present study
commercial granular AC 581 0.32 0.10 35.3 present study
Tab.4  Comparison adsorption capacities of various activated carbons for MB
1 Wall D A, Kiehn F A, Friesen G H. Control of Jerusalem Artichoke (Heliantbus tuberosus) in Barley (Hordeumvulgare). Weed Science, 1986, 34(5): 761–764
2 Yu L, Chen Z X, Tong X, Li K, Li W W. Anaerobic degradation of microcrystalline cellulose: kinetics and micro-scale structure evolution. Chemosphere, 2012, 86(4): 348–353
https://doi.org/10.1016/j.chemosphere.2011.09.049 pmid: 22094051
3 Liou T H. Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chemical Engineering Journal, 2010, 158(2): 129–142
https://doi.org/10.1016/j.cej.2009.12.016
4 Hu Z H, Srinivasan M P, Ni Y M. Preparation of mesoporous high-surface area activated carbon. Advanced Materials, 2000, 12(1): 62–65
https://doi.org/10.1002/(SICI)1521-4095(200001)12:1<62::AID-ADMA62>3.0.CO;2-B
5 Gupta V K, Gupta B, Rastogi A, Agarwal S, Nayak A. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113. Journal of Hazardous Materials, 2011, 186(1): 891–901
https://doi.org/10.1016/j.jhazmat.2010.11.091 pmid: 21163571
6 Zhu Z L, Li A, Yan L, Liu F Q, Zhang Q X. Preparation and characterization of highly mesoporous spherical activated carbons from divinylbenzene-derived polymer by ZnCl2 activation. Journal of Colloid and Interface Science, 2007, 316(2): 628–634
https://doi.org/10.1016/j.jcis.2007.09.016 pmid: 17904151
7 Deng H, Zhang G L, Xu X L, Tao G H, Dai J L. Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation. Journal of Hazardous Materials, 2010, 182(1–3): 217–224
https://doi.org/10.1016/j.jhazmat.2010.06.018 pmid: 20605068
8 Dubey S P, Dwivedi A D, Sillanp?? M, Gopal K. Artemisia vulgaris-derived mesoporous honeycomb-shaped activated carbon for ibuprofen adsorption. Chemical Engineering Journal, 2010, 165(2): 537–544
https://doi.org/10.1016/j.cej.2010.09.068
9 Khalili N R, Campbell M, Sandi G, Golas J. Production of micro- and mesoporous activated carbon from paper mill sludge. I. Effect of zinc chloride activation. Carbon, 2000, 38(14): 1905–1915
https://doi.org/10.1016/S0008-6223(00)00043-9
10 Ahmad A L, Ismail S, Bhatia S. Optimization of coagulation-flocculation process for palm oil mill effluent using response surface methodology. Environmental Science & Technology, 2005, 39(8): 2828–2834
https://doi.org/10.1021/es0498080 pmid: 15884382
11 Ba?aoui A, Yaacoubi A, Dahbi A, Bennouna C, Phan Tan Luu R, Maldonado-Hodar F J, Rivera-Utrilla J, Moreno-Castilla C. Optimization of conditions for the preparation of activated carbons from olive-waste cakes. Carbon, 2001, 39(3): 425–432
https://doi.org/10.1016/S0008-6223(00)00135-4
12 Theydan S K, Ahmed M J. Optimization of preparation conditions for activated carbons from date stones using response surface methodlogy. Powder Technology, 2012, 224: 101–108
https://doi.org/10.1016/j.powtec.2012.02.037
13 Quintana J B, Rodil R, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D. Investigating the chlorination of acidic pharmaceuticals and by-product formation aided by an experimental design methodology. Water Research, 2010, 44(1): 243–255
https://doi.org/10.1016/j.watres.2009.09.018 pmid: 19800649
14 d’ Almeida A L F S, Barreto D W, Calado V, d’Almeida J R M. Thermal analysis of less common lignocellulose fibers. Journal of Thermal Analysis and Calorimetry, 2008, 91(2): 405–408
https://doi.org/10.1007/s10973-007-8606-6
15 Warhurst A M, Fowler G D, McConnachie G L, Pollard S J T. Pore structure and adsorption characteristics of steam pyrolysis carbons from Moringa oleifera. Carbon, 1997, 35(8): 1039–1045
https://doi.org/10.1016/S0008-6223(97)00053-5
16 Tamai H, Kakii T, Hirota Y, Kumamoto T, Yasuda H. Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules. Chemistry of Materials, 1996, 8(2): 454–462
https://doi.org/10.1021/cm950381t
17 Kuehl R O. Design of Experiments: Statistical Principles of Research Design and Analysis. 2nd ed. Pacific Grove, CA: Duxbury Press, 2000, 2–225
18 Ghasempur S, Torabi S F, Ranaei-Siadat S O, Jalali-Heravi M, Ghaemi N, Khajeh K. Optimization of peroxidase-catalyzed oxidative coupling process for phenol removal from wastewater using response surface methodology. Environmental Science & Technology, 2007, 41(20): 7073–7079
https://doi.org/10.1021/es070626q pmid: 17993150
19 Avelar F F, Bianchi M L, Gon?alves M, G Mota E. The use of piassava fibers (Attalea funifera) in the preparation of activated carbon. Bioresource Technology, 2010, 101(12): 4639–4645
https://doi.org/10.1016/j.biortech.2010.01.103 pmid: 20172713
20 Okada K, Yamamoto N, Kameshima Y, Yasumori A. Porous properties of activated carbons from waste newspaper prepared by chemical and physical activation. Journal of Colloid and Interface Science, 2003, 262(1): 179–193
https://doi.org/10.1016/S0021-9797(03)00107-3 pmid: 16256594
21 Ghaedi M, Sadeghian B, Pebdani A A, Sahraei R, Daneshfar A, Duran C. Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon. Chemical Engineering Journal, 2012, 187: 133–141
https://doi.org/10.1016/j.cej.2012.01.111
22 Durano?lu D, Trochimczuk A W, Beker U. Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile-divinylbenzene copolymer. Chemical Engineering Journal, 2012, 187: 193–202
https://doi.org/10.1016/j.cej.2012.01.120
23 Mahmoodi N M, Hayati B, Arami M, Lan C. Adsorption of textile dyes on pine cone from colored wastewater: kinetic, equilibrium and thermodynamic studies. Desalination, 2011, 268(1–3): 117–125
https://doi.org/10.1016/j.desal.2010.10.007
24 Ahmad R, Kumar R. Adsorptive removal of Congo Red dye from aqueous solution using bael shell carbon. Applied Surface Science, 2010, 257(5): 1628–1633
https://doi.org/10.1016/j.apsusc.2010.08.111
25 Toor M, Jin B. Adsorption characteristics, isotherm, kinetics and diffusion of modified natural bentonite for removing diazo dye. Chemical Engineering Journal, 2012, 187: 79–88
https://doi.org/10.1016/j.cej.2012.01.089
26 Ocampo-Perez R, Leyva-Ramos R, Mendoza-Barron J, Guerrero-Coronado R M. Adsorption rate of phenol from aqueous solution onto organobentonite: surface diffusion and kinetic models. Journal of Colloid and Interface Science, 2011, 364(1): 195–204
https://doi.org/10.1016/j.jcis.2011.08.032 pmid: 21911219
27 Vadivelan V, Kumar K V. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. Journal of Colloid and Interface Science, 2005, 286(1): 90–100
https://doi.org/10.1016/j.jcis.2005.01.007 pmid: 15848406
28 Gao P, Liu Z H, Xue G, Han B, Zhou M H. Preparation and characterization of activated carbon produced from rice straw by (NH4)2HPO4 activation. Bioresource Technology, 2011, 102(3): 3645–3648
https://doi.org/10.1016/j.biortech.2010.11.080 pmid: 21145231
29 Nuithitikul K, Srikhun S, Hirunpraditkoon S. Influences of pyrolysis condition and acid treatment on properties of durian peel-based activated carbon. Bioresource Technology, 2010, 101(1): 426–429
https://doi.org/10.1016/j.biortech.2009.07.040 pmid: 19695874
30 Foo K Y, Hameed B H. Preparation and characterization of activated carbon from pistachio nut shells via microwave-induced chemical activation. Biomass and Bioenergy, 2011, 35(7): 3257–3261
https://doi.org/10.1016/j.biombioe.2011.04.023
31 Basta A H, Fierro V, Saied H, Celzard A. Effect of deashing rice straws on their derived activated carbons produced by phosphoric acid activation. Biomass and Bioenergy, 2011, 35(5): 1954–1959
https://doi.org/10.1016/j.biombioe.2011.01.043
32 Kang S, Jianchun J, Dan Dan C. Preparation of activated carbon with highly developed mesoporous structure from Camellia oleifera shell through water vapor gasification and phosphoric acid modification. Biomass and Bioenergy, 2011, 35(8): 3643–3647
https://doi.org/10.1016/j.biombioe.2011.05.007
[1] Supplementary Material Download
[1] Haoran Feng, Min Liu, Wei Zeng, Ying Chen. Optimization of the O3/H2O2 process with response surface methodology for pretreatment of mother liquor of gas field wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 78-.
[2] Yan Zhang, Yuyan Zhang, Xue Li, Xiaohan Zhao, Cosmos Anning, John Crittenden, Xianjun Lyu. Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen production[J]. Front. Environ. Sci. Eng., 2020, 14(4): 69-.
[3] Ziming Zhao, Wenjun Sun, Madhumita B. Ray, Ajay K Ray, Tianyin Huang, Jiabin Chen. Optimization and modeling of coagulation-flocculation to remove algae and organic matter from surface water by response surface methodology[J]. Front. Environ. Sci. Eng., 2019, 13(5): 75-.
[4] Xiaomeng Wang, Ning Li, Jianye Li, Junjun Feng, Zhun Ma, Yuting Xu, Yongchao Sun, Dongmei Xu, Jian Wang, Xueli Gao, Jun Gao. Fluoride removal from secondary effluent of the graphite industry using electrodialysis: Optimization with response surface methodology[J]. Front. Environ. Sci. Eng., 2019, 13(4): 51-.
[5] Kishore Gopalakrishnan, Javad Roostaei, Yongli Zhang. Mixed culture of Chlorella sp. and wastewater wild algae for enhanced biomass and lipid accumulation in artificial wastewater medium[J]. Front. Environ. Sci. Eng., 2018, 12(4): 14-.
[6] Bai-Hang Zhao, Jie Chen, Han-Qing Yu, Zhen-Hu Hu, Zheng-Bo Yue, Jun Li. Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: Hyacinth as an example[J]. Front. Environ. Sci. Eng., 2017, 11(6): 17-.
[7] Yan GUO, Chuanfu WU, Qunhui WANG, Min YANG, Qiqi HUANG, Markus MAGEP, Tianlong ZHENG. Wastewater-nitrogen removal using polylactic acid/starch as carbon source: Optimization of operating parameters using response surface methodology[J]. Front. Environ. Sci. Eng., 2016, 10(4): 6-.
[8] Liuyan WU,Lijuan JIA,Xiaohan LIU,Chao LONG. The prediction of adsorption isotherms of ester vapors on hypercrosslinked polymeric adsorbent[J]. Front. Environ. Sci. Eng., 2016, 10(3): 482-490.
[9] Liangzhi LI,Xiaolin LI,Ci YAN,Weiqiang GUO,Tianyi YANG,Jiaolong FU,Jiaoyan TANG,Cuiying HU. Optimization of methyl orange removal from aqueous solution by response surface methodology using spent tea leaves as adsorbent[J]. Front.Environ.Sci.Eng., 2014, 8(4): 496-502.
[10] Guangyin ZHEN, Xueqin LU, Baoying WANG, Youcai ZHAO, Xiaoli CHAI, Dongjie NIU, Tiantao ZHAO. Enhanced dewatering characteristics of waste activated sludge with Fenton pretreatment: effectiveness and statistical optimization[J]. Front Envir Sci Eng, 2014, 8(2): 267-276.
[11] Chengyuan SU, Weiguang LI, Yong WANG. Adsorption property of direct fast black onto acid-thermal modified sepiolite and optimization of adsorption conditions using Box-Behnken response surface methodology[J]. Front Envir Sci Eng, 2013, 7(4): 503-511.
[12] WANG Xuejiang, XIA Siqing, ZHAO Jianfu. Biosorption of Direct Black 38 by dried anaerobic granular sludge[J]. Front.Environ.Sci.Eng., 2008, 2(2): 198-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed