Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (2) : 240-249    https://doi.org/10.1007/s11783-014-0646-0
RESEARCH ARTICLE
Analysis and assessment of heavy metal contamination in surface water and sediments: a case study from Luan River, Northern China
Zhaoming WANG1,2,Ranhao SUN1,Haiping ZHANG1,2,Liding CHEN1,*()
1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(591 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Concentrations of the heavy metals Cu, Ni, Pb, Zn, Cd, and Cr were examined in surface water and sediment from the Luan River inChina,. With a decline in Cu and Ni concentration found in surface water at downstream stations. This finding suggests that water currents are a major explanatory factor in heavy metal contamination. The abundance of Cr, Pb, and Cd observed in the middle reaches of the river indicates heavy metal contamination in local areas, although there was an obvious decrease in concentrations in the water downstream of the Daheiting Reservoir. The significant rising trend in Cu, Pb, and Ni seen the sediment farther away from the river also suggests that anthropogenic activities contribute to heavy metal pollution Sediments were therefore used as environmental indicators, with sediment assessment was conducted using the geo-accumulation index (Igeo) and the potential ecological risk index (RI). The Igeo values revealed that Cd (3.13) and Cr (2.39) had accumulated significantly in the Luan River. The RI values for most (89%) of the sampling stations were higher than 300, suggesting that sediment from the Luan River poses a severe ecological risk, with the potential ecological risks downstream higher than that in the upper and middle streams. Good correlations among Pb/Ni, Pb/Cd, Cu/Pb, and Cu/Cd in the water and Cr/Ni in the sediment were observed. Cluster analysis suggested that Cd may have various origins, being derived from anthropogenic sources.

Keywords heavy metal      water      sediment      geo-accumulation index      Luan River     
Corresponding Author(s): Liding CHEN   
Online First Date: 18 February 2014    Issue Date: 13 February 2015
 Cite this article:   
Zhaoming WANG,Ranhao SUN,Haiping ZHANG, et al. Analysis and assessment of heavy metal contamination in surface water and sediments: a case study from Luan River, Northern China[J]. Front. Environ. Sci. Eng., 2015, 9(2): 240-249.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0646-0
https://academic.hep.com.cn/fese/EN/Y2015/V9/I2/240
Fig.1  Map showing sampling stations (1 through 19) on the mainstream of Luan River
reach statistics Cu Ni Pb Zn Cd Cr CON pH
I min 6.66 2.54 6.53 78.02 0.86 9.47 166.9 7.8
max 20.10 13.89 11.16 176.30 1.14 38.54 439.0 9.0
mean 14.34 6.66 8.65 119.64 0.95 16.79 284.7 8.2
S.D. 5.97 4.82 1.95 41.88 0.11 12.31 104.5 0.5
CV /% 41.65 72.29 22.57 35.00 11.96 73.30 36.7 6.1
II min 6.89 4.73 8.72 67.60 0.85 12.42 317.9 7.4
max 29.36 12.02 15.14 149.56 1.02 89.28 583.0 8.2
mean 12.63 7.29 11.53 99.36 0.94 39.88 438.1 8.0
S.D. 6.25 2.26 2.07 22.21 0.05 26.96 109.3 0.3
CV /% 49.48 31.03 17.95 22.35 5.23 67.60 24.9 3.4
III min 3.65 1.34 6.57 55.84 0.82 7.90 194.2 7.9
max 5.54 3.70 9.17 131.54 0.99 12.64 666.0 8.6
mean 4.70 2.33 7.72 96.52 0.88 9.99 581.5 8.2
S.D. 0.80 0.88 1.27 29.26 0.07 2.14 99.9 0.3
CV /% 16.98 37.59 16.44 30.31 8.04 21.41 17.2 3.4
total average 10.56 5.43 9.30 105.17 0.92 22.22 434.77 8.13
Tab.1  Summary statistics of heavy metals and nutrition elements in water (μg·L-1)
Fig.2  Significance analysis of heavy metals in different sections: (a) significance analysis of heavy metals in water in different sections; (b) significance analysis of heavy metals in sediment in different sections
Fig.3  Local distribution of Cd concentrations in sediment: (a) local distribution of heavy metals (Cu, Ni) concentrations in surface water; (b) local distribution of heavy metals (Pb, Cr, Cd) concentrations in surface water; (c) local distribution of heavy metals (Cu, Ni, Pb) concentrations in sediment; (d) local distribution of Cd concentrations in sediment
reach statistics Cu Ni Pb Zn Cd Cr
I min 4.82 4.09 11.54 75.52 0.69 65.34
max 14.76 21.19 25.15 278.60 1.28 98.10
mean 8.78 11.52 19.20 160.90 0.98 85.99
S.D. 4.26 7.41 5.86 93.13 0.24 14.56
CV /% 48.51 64.32 30.54 57.88 24.42 16.93
II min 7.83 8.83 16.03 58.68 0.92 61.60
max 29.57 50.42 29.65 155.20 1.09 275.39
mean 14.87 21.92 21.18 114.01 0.99 128.94
S.D. 7.81 13.42 3.83 34.23 0.06 74.21
CV /% 52.49 61.22 18.10 30.03 6.32 57.56
III min 8.24 17.58 22.62 114.32 0.97 67.35
max 37.51 58.82 54.41 150.87 1.12 203.80
mean 21.12 29.55 32.01 137.85 1.04 106.58
S.D. 11.50 17.03 13.27 16.51 0.07 56.36
CV /% 54.45 57.62 41.48 11.98 7.05 52.88
total average 14.92 21.00 24.13 137.59 1.00 107.17
Tab.2  Summary statistics of heavy metal concentrations in sediments (mg·kg-1)
heavy metals Cu Ni Pb Zn Cd Cr
water(19) Cu 1.000 0.827** 0.510* 0.202 0.515* 0.252
Ni 1.000 0.706** 0.223 0.696** 0.427
Pb 1.000 0.207 0.521* 0.462*
Zn 1.000 0.498* 0.120
Cd 1.000 0.276
Cr 1.000
sediment(19) Cu 1.000 0.212 0.386 -0.230 0.226 -0.113
Ni 1.000 0.158 -0.146 0.116 0.698**
Pb 1.000 -0.195 0.467* -0.091
Zn 1.000 -0.454 0.051
Cd 1.000 -0.013
Cr 1.000
Tab.3  Correlation between concentrations of different heavy metals in water, sediment
Fig.4  Cluster analysis dendrogram dendrogram showing clustering of heavy metals
stations Igeo RI
Cu Ni Pb Zn Cd Cr
1 -1.35 -0.50 -0.45 -0.50 2.73 0.84 319.73
2 -2.96 -2.87 -1.38 1.39 2.24 0.32 225.10
3 -2.15 -1.21 -0.73 0.85 2.74 0.72 317.50
4 -2.40 -1.94 -0.25 -0.12 3.13 0.90 409.45
5 -1.84 -1.26 -0.02 0.31 2.72 0.90 317.08
6 -1.99 0.75 -0.75 0.52 2.89 2.16 368.46
7 -1.95 0.16 -0.56 0.54 2.65 2.39 315.40
8 -2.26 -1.76 -0.40 -0.23 2.89 0.78 349.49
9 -2.00 -1.43 -0.46 0.49 2.80 0.67 329.48
10 -1.66 -1.01 -0.90 -0.37 2.70 0.23 306.87
11 -0.53 -0.99 -0.77 0.29 2.66 1.75 310.25
12 -0.34 -0.18 -0.36 -0.15 2.77 0.70 331.21
13 -1.50 -1.13 -0.56 -0.86 2.66 0.41 299.63
14 -0.82 0.12 -0.45 -0.22 2.74 1.12 326.57
15 -0.50 -0.04 0.86 0.25 2.92 1.00 373.87
16 0.00 -0.33 -0.31 0.47 2.93 0.36 369.07
17 -0.90 -0.71 0.18 0.50 2.83 0.43 344.27
18 -1.51 0.97 -0.26 0.10 2.73 1.96 334.99
19 -2.19 -0.77 -0.41 0.50 2.71 0.71 314.18
max 0.00 0.97 0.86 1.39 3.13 2.39 409.45
min -2.96 -2.87 -1.38 -0.86 2.24 0.23 225.10
mean -1.52 -0.74 -0.42 0.20 2.76 0.97 329.61
S.D. 0.80 0.94 0.46 0.52 0.17 0.64 37.72
Tab.4  Geoaccumulation indices (Igeo), potential ecological risk indices (RI) of heavy metals for sediments
1 Adaikpoh E O, Nwajei G E, Ogala J E. Heavy metals concentrations in coal and sediments from River Ekulu in Enugu, Coal City of Nigeria. Journal of Applied Sciences and Environmental Management, 2005, 9(3): 5–8
2 Reza R, Singh G. Heavy metal contamination and its indexing approach for river water. International Journal of Environmental Science and Technology, 2010, 7(4): 785–792
3 Conley D J, Paerl H W, Howarth R W, Boesch D F, Seitzinger S P, Havens K E, Lancelot C, Likens G E. Ecology. Controlling eutrophication: nitrogen and phosphorus. Science, 2009, 323: 1014–1015
https://doi.org/10.1126/science.1167755 pmid: 19229022
4 Duan S W, Xu F, Wang L J. Long-term changes in nutrient concentrations of the Changjiang River and principal tributaries. Biogeochemistry, 2008, 85(2): 215–234
5 Turner R E, Rabalais N N, Justic D, Dortch Q. Global patterns of dissolved N, P and Si in large rivers. Biogeochemistry, 2003, 64(3): 297–317
https://doi.org/10.1023/A:1024960007569
6 Zubaidah I, Khatijah S, Siti Z O, Abu H R, Sharif M S, Ramlee K, Shin Y K. Determining and comparing the levels of heavy metal concentrations in two selected urban river water. Measurement, 2013, 46(10): 4135–4144
7 Krishna A K, Satyanarayanan M, Govil P K. Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: A case study from Patancheru, Medak District, Andhra Pradesh, India. Journal of Hazardous Materials, 2009, 167(1–3): 366–373
8 Kifayatullah K, Lu Y L, Hizbullah K, Shahida Z, Ihsanullah, Sardar K, Akbar A K, Luo W, Wang T Y. Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan. Journal of Environmental Sciences, 2013, 25(10): 2003–2013
9 Müller G. Die Schwermetallbelstung der sedimente des Neckars und seiner Nebenflusse: eine Bestandsaufnahme. Chemiker-Zeitung 1981, 105: 157–164
10 Schindler D W, Hesslein R H, Wageman R, Broecker W S. Effects of acidification on mobilization of heavy metals and radionuclides from sediments of a freshwater lake. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37: 373–377
https://doi.org/10.1139/f80-051
11 Gibbs R J. Mechanisms of trace metal transport in rivers. Science, 1973, 180(4081): 71–73
https://doi.org/10.1126/science.180.4081.71 pmid: 17757978
12 Salomons W, F?rstner U. Metals in the Hydrocycle. Berlin: Springer, 1984, 212–257
13 Liu J L, Li Y L, Zhang B, Cao J L, Cao Z G, Joseph G. Ecological risk of heavy metals in sediments of the Luan River source water. Ecotoxicology, 2009, 18(6): 748–758
14 Soares H M V M, Boaventura R A R, Machado A A S C, Esteves da silva J C G. Sediments as monitors of heavy metal contamination in the Ave River Basin (Portugal): multivariate analysis of data. Environmental Pollution, 1999, 105(3): 311–323
15 Zhou J, Ma D S, Pan J, Nie W M. Application of multivariate statistical approach to identify heavy metal sources in sediment and waters: A case study in Yangzhong, China. Environmental Geology, 2008, 54(2): 373–380
16 Sakan S M, Dordevic D S, Manojlovic D D, Predrag P S. Assessment of heavy metal pollutants accumulation in the Tisza river sediments. Journal of Environmental Management, 2009, 90(11): 3382–3390
17 Zhang J, Liu C L. Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 2002, 54(6): 1051–1070
18 Fernandes H M. Heavy metal distribution in sediments and ecological risk assessment: The role of diagenetic processes in reducing metal toxicity in bottom sediments. Environmental Pollution, 1997, 97(3): 317–325
https://doi.org/10.1016/S0269-7491(97)00004-3 pmid: 15093371
19 Zhu H N, Yuan X Z, Zeng G M, Jiang M, Liang J, Zhang C, Yin J, Huang H J, Liu Z F, Jiang H W. Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Transactions of Nonferrous Metals Society of China, 2012, 22(6): 1470–1477
20 Yi Y, Yang Z, Zhang S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 2011, 159(10): 2575–2585
https://doi.org/10.1016/j.envpol.2011.06.011 pmid: 21752504
21 Hakanson L. An ecological risk index for aquatic pollution control, a sedimentecological approach. Water Research, 1980, 14(8): 975–1001
https://doi.org/10.1016/0043-1354(80)90143-8
22 Zhao Q N, Xu Q X, Yang K. Application of potential ecological risk index in soil pollution of typical polluting industries. Journal of East china Normal University (Natural Science), 2005, (1): 111–116
23 Casado-Martinez M C, Forja J M, Delvalls T A. A multivariate assessment of sediment contamination in dreged materials from Spanish ports. Journal of Hazadous Materials, 2009, 163(2–3): 1353–1359
24 Chung C Y, Chen J J, Lee C G, Chiu C Y, Lai W L, Liao S W. Integrated estuary management for diffused sediment pollution in Dapeng Bay and neighboring rivers (Taiwan). Environmental Monitoring and Assessment, 2011, 173(1–4): 499–517
https://doi.org/10.1007/s10661-010-1401-z pmid: 20195746
25 Yang Z, Wang Y, Shen Z, Niu J, Tang Z. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. Journal of Hazardous Materials, 2009, 166(2–3): 1186–1194
https://doi.org/10.1016/j.jhazmat.2008.12.034 pmid: 19179000
26 Goorzadi M, Vahabzadeh G Ghanbarpour M R, Karbassi A R. Assessment of heavy metal pollution in Tilehbon River Sediments, Iran. Journal of Applied Sciences, 2009, 9(6): 1190–1193
27 Li Y L, Liu J L. Health risk assessment on heavy metal pollution in the water environment of Luan River. Journal of Agro-Environment Science, 2009, 28(6): 1177–1184 (in Chinese)
28 Gao L C. Discussion on present situation of water environment and its protective measures in Chengde City. Journal of Hebei Engineering and Technical College, 2012, 9(3): 28–31
29 Lu R K. Soil and Agricultural Chemistry Analysis Method. Beijing: China Agricultural Science and Technology Press, 2000 (in Chinese)
[1] Tao Liu, Yudong Song, Zhiqiang Shen, Yuexi Zhou. Inhibition character of crotonaldehyde manufacture wastewater on biological acidification[J]. Front. Environ. Sci. Eng., 2021, 15(6): 119-.
[2] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[3] Ziyue Yin, Qing Lin, Shaohui Xu. Using hydrochemical signatures to characterize the long-period evolution of groundwater information in the Dagu River Basin, China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 105-.
[4] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[5] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[6] Byungjin Lee, Eun Seo Jo, Dong-Wha Park, Jinsub Choi. Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing non-degradable organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(5): 90-.
[7] Mengzhi Ji, Zichen Liu, Kaili Sun, Zhongfang Li, Xiangyu Fan, Qiang Li. Bacteriophages in water pollution control: Advantages and limitations[J]. Front. Environ. Sci. Eng., 2021, 15(5): 84-.
[8] Haoran Feng, Min Liu, Wei Zeng, Ying Chen. Optimization of the O3/H2O2 process with response surface methodology for pretreatment of mother liquor of gas field wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 78-.
[9] Danyang Liu, Johny Cabrera, Lijuan Zhong, Wenjing Wang, Dingyuan Duan, Xiaomao Wang, Shuming Liu, Yuefeng F. Xie. Using loose nanofiltration membrane for lake water treatment: A pilot study[J]. Front. Environ. Sci. Eng., 2021, 15(4): 69-.
[10] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[11] Shanshan Zhao, Zhu Tao, Liwei Chen, Muqiao Han, Bin Zhao, Xuelin Tian, Liang Wang, Fangang Meng. An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation[J]. Front. Environ. Sci. Eng., 2021, 15(4): 63-.
[12] Zhiling Wu, Xianchun Tang, Hongbin Chen. Seasonal and treatment-process variations in invertebrates in drinking water treatment plants[J]. Front. Environ. Sci. Eng., 2021, 15(4): 62-.
[13] Safaa M. Ezzat, Mohammed T. Mohammed T.. Treating wastewater under zero waste principle using wetland mesocosms[J]. Front. Environ. Sci. Eng., 2021, 15(4): 59-.
[14] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[15] Yue Hu, Ding Dong, Kun Wan, Chao Chen, Xin Yu, Huirong Lin. Potential shift of bacterial community structure and corrosion-related bacteria in drinking water distribution pipeline driven by water source switching[J]. Front. Environ. Sci. Eng., 2021, 15(2): 28-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed