Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (3) : 305-315    https://doi.org/10.1007/s11783-014-0647-z
REVIEW ARTICLE
Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in biodegradation process
ZHANG Dong1,2,ZHU Lizhong1,2,()
Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
 Download: PDF(338 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bioremediation of hydrophobic organic compounds (HOCs) contaminated soils involves several physicochemical and microbiological interfacial processes among the soil-water-microorganism interfaces. The participation of surfactants facilitates the mass transport of HOCs in both the physicochemical and microbiological interfaces by reducing the interfacial tension. The effects and underlying mechanisms of surfactants on the physicochemical desorption of soil-sorbed HOCs have been widely studied. This paper reviewed the progress made in understanding the effects of surfactant on microbiological interfacial transport of HOCs and the underlying mechanisms, which is vital for a better understanding and control of the mass transfer of HOCs in the biodegradation process. In summary, surfactants affect the microbiological interfacial behaviors of HOCs during three consecutive processes: the soil solution-microorganism sorption, the transmembrane process, and the intracellular metabolism. Surfactant could promote cell sorption of HOCs depending on the compatibility of surfactant hydrophile hydrophilic balance (HLB) with cell surface properties; while the dose ratio between surfactant and biologic mass (membrane lipids) determined the transmembrane processes. Although surfactants cannot easily directly affect the intracellular enzymatic metabolism of HOCs due to the steric hindrace, the presence of surfactants can indirectly enhanced the metabolism by increasing the substrate concentrations.

Keywords biodegradation      sorption      transmembrane transport      microbiological interfaces      surfactants     
Corresponding Author(s): ZHU Lizhong   
Issue Date: 19 May 2014
 Cite this article:   
ZHANG Dong,ZHU Lizhong. Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in biodegradation process[J]. Front.Environ.Sci.Eng., 2014, 8(3): 305-315.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0647-z
https://academic.hep.com.cn/fese/EN/Y2014/V8/I3/305
Fig.1  Schematic diagram of the effects of surfactant on the four-processes during the bioremediation [5]
Fig.2  Schematic diagram of surfactant-enhanced bioremediation [4]
surfactantsspeciesconcentrationmicroorganisms (CSH)a)contaminantseffectb)Ref.
cell surface properties and interactionsRhamnolipids20–400 mg·L-1Bacillus subtilis BUM (73.5%)phenanthrene[24]
P. aeruginosa P-CG3 (24.7%)+
Tween 800.24 mmol·L-1two Mycobacterium (both hydrophobic)fluoranthene[35]
two Sphingomonas (both hydrophilic)+
TX100, Tween 80,two rhamnolipids0.25–3 CMCBacillus sp. 15UM (hydrophobic)phenanthrene[36]
TX100, RL, saponin120 mg·L-1Aeromonas hydrofila (CSH 7%)diesel oil+[37]
TX1000–1000 mg·L-1consortiaphenanthrene+[38]
modifying membrane permeabilityrhamnolipids100 mg·L-1Bacillus cereusfluoranthene0[39]
Tween 800.1%, 0.5%, 1%Polyporus sp. S133phenanthrene+[40]
interaction with enzymes as scavengersSteol CS-330, Tween 80, α-olefin sulfonate 14-16, Neodol 25-7,Aerosol MA 80-I25 mg·L-1consortiaperchloroethene[41]
TX1000.16–6.4 mmol·L-1consortiaatrazine[42]
Tab.1  
Fig.3  Orientation of surfactants or microbial biosurfactants at the microbial cell surface slightly modified from [55]. The hydrophobic part of the surfactants is indicated by a straight line, and the hydrophilic part is indicated by circle head. The possible adhesion of microorganisms to interfaces with hydrophilic (hatched) or hydrophobic (dotted) properties is indicated. CSH means cell surface hydrophobicity. (A. microorganisms with relative high cell surface hydrophobicity; B. microorganisms with relative low CSH)
Fig.4  Schematic representations of interactions between membrane lipid and surfactant [7678]. A: alteration of the membrane permeability at relative low surfactant concentrations; B: solubilization of membrane and mixed micelle formation at high surfactant concentrations
Fig.5  Schematic representations of dioxygenases. (a) Phylogenetic tree of the α subunits of Rieske non-heme iron oxygenases [95]; (b) Scheme of dihydroxylation reaction catalyzed by naphthalene dioxygenases (NDO) [89]
1 Churchill P F, Dudley R J, Churchill S A. Surfactant-enhanced bioremediation. Waste Management, 1995, 15(5–6): 371–377
doi: 10.1016/0956-053X(95)00038-2
2 Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R. Bioremediation approaches for organic pollutants: a critical perspective. Environmental International, 2011, 37(8): 1362–1375
doi: 10.1016/j.envint.2011.06.003
3 Kim Y M, Ahn C K, Woo S H, Jung G Y, Park J M. Synergic degradation of phenanthrene by consortia of newly isolated bacterial strains. Journal of Biotechnology, 2009, 144(4): 293–298
doi: 10.1016/j.jbiotec.2009.09.021
4 Zhu L Z, Lu L, Zhang D. Mitigation and remediation technologies for organic contaminated soils. Frontiers of Environmental Science & Engineering in China, 2010, 4(4): 373–386
doi: 10.1007/s11783-010-0253-7
5 Zhu L Z. Controlling technology of interfacial behaviors of organic pollutants and its application. Acta Scientiae Circumstantiae, 2012, 32(11): 2641–2649 (in Chinese)
6 Yang K, Zhu L Z, Xing B S. Enhanced soil washing of phenanthrene by mixed solutions of TX100 and SDBS. Environmental Science & Technology, 2006, 40(13): 4274–4280
doi: 10.1021/es060122c
7 Yu H, Zhu L, Zhou W. Enhanced desorption and biodegradation of phenanthrene in soil-water systems with the presence of anionic-nonionic mixed surfactants. Journal of Hazardous Materials, 2007, 142(1–2): 354–361
doi: 10.1016/j.jhazmat.2006.08.028
8 Zhao B W, Zhu L Z, Li W, Chen B L. Solubilization and biodegradation of phenanthrene in mixed anionic-nonionic surfactant solutions. Chemosphere, 2005, 58(1): 33–40
doi: 10.1016/j.chemosphere.2004.08.067
9 Kile D E, Chiou C T. Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration. Environmental Science & Technology, 1989, 23(7): 832–838
doi: 10.1021/es00065a012
10 Rosen M J Surfactants and Interfacial Phenomena. Hoboken: Wiley-Interscience, 2004
11 Gao Y Z, Zhu L Z. Phytoremediation for phenanthrene and pyrene contaminated soils. Journal of Environmental Science-China, 2005, 17(1): 14–18
12 Americane Petrolum Institute. Underground Movements of Gasoline on Groundwater and Enhanced Recovery by Surfactants. Washington, D C: API Publication, 1979, No. 4317
13 Paria S. Surfactant-enhanced remediation of organic contaminated soil and water. Advances in Colloid and Interface Science, 2008, 138(1): 24–58
doi: 10.1016/j.cis.2007.11.001
14 Chen B, Wang Y, Hu D. Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of white-rot fungi. Journal of Hazardous Materials, 2010, 179(1–3): 845–851
doi: 10.1016/j.jhazmat.2010.03.082
15 Al-Tahhan R A, Sandrin T R, Bodour A A, Maier R M. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Applied and Environmental Microbiology, 2000, 66(8): 3262–3268
doi: 10.1128/AEM.66.8.3262-3268.2000
16 Zhang D, Zhu L Z. Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1. Environmental Pollution, 2012, 164: 169–174
doi: 10.1016/j.envpol.2012.01.036
17 Chan S M N, Luan T, Wong M H, Tam N F Y. Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environmental Toxicology and Chemistry, 2006, 25(7): 1772–1779
doi: 10.1897/05-354R.1
18 Stringfellow W T, Alvarez-Cohen L. Evaluating the relationship between the sorption of PAHs to bacterial biomass and biodegradation. Water Research, 1999, 33(11): 2535–2544
doi: 10.1016/S0043-1354(98)00497-7
19 Vijayaraghavan K, Yun Y S. Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution. Journal of Hazardous Materials, 2007, 141(1): 45–52
doi: 10.1016/j.jhazmat.2006.06.081
20 Xiao L, Qu X, Zhu D. Biosorption of nonpolar hydrophobic organic compounds to Escherichia coli facilitated by metal and proton surface binding. Environmental Science & Technology, 2007, 41(8): 2750–2755
doi: 10.1021/es062343o
21 Chakraborty S, Mukherji S, Mukherji S. Surface hydrophobicity of petroleum hydrocarbon degrading Burkholderia strains and their interactions with NAPLs and surfaces. Colloids and Surface B-Biointerfaces, 2010, 78(1): 101–108
doi: 10.1016/j.colsurfb.2010.02.019
22 Owsianiak M, Szulc A, Chrzanowski L, Cyplik P, Bogacki M, Olejnik-Schmidt A K, Heipieper H J. Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity. Applied Microbiology and Biotechnology, 2009, 84(3): 545–553
doi: 10.1007/s00253-009-2040-6
23 Zeng G M, Liu Z F, Zhong H, Li J B, Yuan X Z, Fu H Y, Ding Y, Wang J, Zhou M F. Effect of monorhamnolipid on the degradation of n-hexadecane by Candida tropicalis and the association with cell surface properties. Applied Microbiology and Biotechnology, 2011, 90(3): 1155–1161
doi: 10.1007/s00253-011-3125-6
24 Zhao Z Y, Selvam A, Wong J W C. Effects of rhamnolipids on cell surface hydrophobicity of PAH degrading bacteria and the biodegradation of phenanthrene. Bioresource Technology, 2011, 102(5): 3999–4007
doi: 10.1016/j.biortech.2010.11.088
25 Johnsen A R, Wick L Y, Harms H. Principles of microbial PAH-degradation in soil. Environmental Pollution, 2005, 133(1): 71–84
doi: 10.1016/j.envpol.2004.04.015
26 Rosenberg M, Gutnick D, Rosenberg E. Adherence of bacteria to hydrocarbons - a simple method for measuring cell-surface hydrophobicity. FEMS Microbiology Letters, 1980, 9(1): 29–33
doi: 10.1111/j.1574-6968.1980.tb05599.x
27 Lindahl M, Faris A, Wadstrom T, Hjerten S. A new test based on salting out to measure relative surface hydrophobicity of bacterial cells. Biochimica et Biophysica Acta-Biomembranes, 1981, 277: 471–476
28 Resenberg M, Rosenberg E. Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Journal of Bacteriology, 1981, 148: 51–57
29 Ismaeel N, Furr J, Pugh W J, Russell A D, Pugh W, Russell A. Hydrophobic properties of Providencia stuartii and other Gram-negative bacteria measured by hydrophobic interaction chromatography. Letters in Applied Microbiology, 1987, 5(5): 91–95
doi: 10.1111/j.1472-765X.1987.tb01622.x
30 Busscher H, Weerkamp A, Mei H D, Pilt A V, Jong H D, Arends J. Measurement of the surface free energy of bacteria cell surfaces and its relevance for adhesion. Applied and Environmental Microbiology, 1984, 48: 980–993
31 Brown D G, Jaffe P R. Effects of nonionic surfactants on the cell surface hydrophobicity and apparent hamaker constant of a Sphingomonas sp. Environmental Science & Technology, 2006, 40(1): 195–201
doi: 10.1021/es051183y
32 Wady A F, Machado A L, Zucolotto V, Zamperini C A, Berni E, Vergani C E. Evaluation of Candida albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticles. Journal of Applied Microbiology, 2012, 112(6): 1163–1172
doi: 10.1111/j.1365-2672.2012.05293.x
33 Mishra S, Singh S N. Microbial degradation of n-hexadecane in mineral salt medium as mediated by degradative enzymes. Bioresource Technology, 2012, 111: 148–154
doi: 10.1016/j.biortech.2012.02.049
34 Kaczorek E, Jesionowski T, Giec A, Olszanowski A. Cell surface properties of Pseudomonas stutzeri in the process of diesel oil biodegradation. Biotechnol ogy Letters, 2012, 34(5): 857–862
doi: 10.1007/s10529-011-0835-x
35 Willumsen P A, Karlson U, Pritchard P H. Response of fluoranthene-degrading bacteria to surfactants. Applied Microbiology and Biotechnology, 1998, 50(4): 475–483
doi: 10.1007/s002530051323
36 Wong J W C, Fang M, Zhao Z Y, Xing B S. Effect of surfactants on solubilization and degradation of phenanthrene under thermophilic conditions. Journal of Environmental Quality, 2004, 33(6): 2015–2025
doi: 10.2134/jeq2004.2015
37 Kaczorek E, Urbanowicz M, Olszanowski A. The influence of surfactants on cell surface properties of Aeromonas hydrophila during diesel oil biodegradation. Colloids Surface B-Biointerfaces, 2010, 81(1): 363–368
doi: 10.1016/j.colsurfb.2010.07.039
38 Seo Y, Bishop P L. Influence of nonionic surfactant on attached biofilm formation and phenanthrene bioavailability during simulated surfactant enhanced bioremediation. Environmental Science & Technology, 2007, 41(20): 7107–7113
doi: 10.1021/es0701154
39 Fuchedzhieva N, Karakashev D, Angelidaki I. Anaerobic biodegradation of fluoranthene under methanogenic conditions in presence of surface-active compounds. Journal of Hazardous Materials, 2008, 153(1–2): 123–127
doi: 10.1016/j.jhazmat.2007.08.027
40 Hadibarata T, Tachibana S. Characterization of phenanthrene degradation by strain Polyporus sp.S133. Journal of Environmental Science-China, 2010, 22(1): 142–149
doi: 10.1016/S1001-0742(09)60085-1
41 McGuire T, Hughes J B. Effects of surfactants on the dechlorination of chlorinated ethenes. Environmental Toxicology and Chemistry, 2003, 22(11): 2630–2638
doi: 10.1897/02-94
42 Mata-Sandoval J C, Karns J, Torrents A. Influence of rhamnolipids and Triton X-100 on the biodegradation of three pesticides in aqueous phase and soil slurries. Journal of Agricultural and Food Chemistry, 2001, 49(7): 3296–3303
doi: 10.1021/jf001432w
43 Górna H, Lawniczak L, Zgola-Grzeskowiak A, Kaczorek E. Differences and dynamic changes in the cell surface properties of three Pseudomonas aeruginosa strains isolated from petroleum-polluted soil as a response to various carbon sources and the external addition of rhamnolipids. Bioresource Technology, 2011, 102(3): 3028–3033
doi: 10.1016/j.biortech.2010.09.124
44 Obuekwe C O, Al-Jadi Z K, Al-Saleh E S. Sequential hydrophobic partitioning of cells of Pseudomonas aeruginosa gives rise to variants of increasing cell surface hydrophobicity. FEMS Microbiology Letters, 2007, 270(2): 214–219
doi: 10.1111/j.1574-6968.2007.00685.x
45 Mohanty S, Mukherji S. Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons. Applied Microbiology and Biotechnology, 2012, 94(1): 193–204
doi: 10.1007/s00253-011-3703-7
46 Gillelan H E, Stinnett J D, Roth I L, Eagon R G. Freeze-etch study of Pseudomonas aeruginosa–Localization within cell wall of an ethylenediaminetraacetate-extractable component. Journal of Bacteriology, 1973, 113(1): 417–432
47 Wick L, Pasche N, Bernasconi S, Pelz O, Harms H. Characterization of multiple-substrate utilization by anthracene-degrading Mycobacterium frederiksbergense LB501T. Applied and Environmental Microbiology, 2003, 69(10): 6133–6142
doi: 10.1128/AEM.69.10.6133-6142.2003
48 Das K, Mukherjee A. Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strains: role of biosurfactants in enhancing bioavailability. Journal of Applied Microbiology, 2007, 102(1): 195–203
doi: 10.1111/j.1365-2672.2006.03070.x
49 Whyte L, Slagman S, Pietrantonio F, Bourbonniere L, Koval S, Lawrence J, Inniss W, Greer C. Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp.strain Q15. Applied and Environmental Microbiology, 1999, 65: 2961–2968
50 Jana T, Srivastava A, Csery K, Arora D. Influence of growth and environmental conditions on cell surface hydrophobicity of Pseudomonas fluorescens in non-specific adhesion. Cananian Journal of Microbiology, 2000, 46(1): 28–37
doi: 10.1139/cjm-46-1-28
51 Zhang Y, Miller R. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Applied and Environmental Microbiology, 1994, 60: 2101–2116
52 Zhong H, Zeng G, Yuan X, Fu H, Huang G, Ren F. Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity. Applied Microbiology and Biotechnology, 2007, 77(2): 447–455
doi: 10.1007/s00253-007-1154-y
53 Noda Y, Kanemasa Y. Determination of hydrophobicity on bacterial surfaces by nonionic surfactants. Journal of Bacteriology, 1986, 167(3): 1016–1019
54 Berset J D, Holzer R. Organic micropollutants in Swiss agriculture–Distribution of polynuclear aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in soil, liquid manure, sewage sludge and compost smaples: a comparative study. International Journal of Environmental Analytical Chemistry, 1995, 59(2–4): 145–165
doi: 10.1080/03067319508041324
55 Neu T R. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiological Reviews, 1996, 60(1): 151
56 Razatos A, Ong Y L, Sharma M M, Georgiou G. Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proceedings of National Academy of Sciences of the United States of America, 1998, 95(19): 11059–11064
doi: 10.1073/pnas.95.19.11059
57 Caroff M, Karibian D. Structure of bacterial lipopolysaccharides. Carbohydrate Research, 2003, 338(23): 2431–2447
doi: 10.1016/j.carres.2003.07.010
58 Alexander C, Rietschel E T. Bacterial lipopolysaccharides and innate immunity. Journal of Endotoxin Research, 2001, 7(3): 167–202
59 Leive L. The barrier function of the Gram-negative envelope. Annals of New York Academy of Sciences, 1974, 235(1 Mode of Actio): 109–129
doi: 10.1111/j.1749-6632.1974.tb43261.x
60 Hazen K C, Lay J G, Hazen B W, Fu R C, Murthy S. Partial biochemical characterization of cel surface hydrophobicity and hydrophilicity of Candida albicans. Infection and Immunity, 1990, 58(11): 3469–3476
61 Bos M P, Tefsen B, Geurtsen J, Tommassen J. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proceedings of National Academy of Sciences of the United States of America, 2004, 101(25): 9417–9422
doi: 10.1073/pnas.0402340101
62 Mozes N, Rouxhet P G. Methods for measuring hydrophobicity of microorganisms. Journal of Microbiological Methods, 1987, 6(2): 99–112
doi: 10.1016/0167-7012(87)90058-3
63 Busscher H J, Vandebeltgritter B, Vandermei H C. Implications of microbial adhesion to hydrocarbons for evaluating cell surface hydrophobicity. 1. Zeta potentials of hdyrocarbon droplets. Colloids and Surface B-Biointerfaces, 1995, 5(3–4): 111–116
doi: 10.1016/0927-7765(95)01224-7
64 Geertsemadoornbusch G I, Vandermei H C, Busscher H J. Microbial cell surface hydrophobicity—The involvement of electrostatic interactions in microbial adhesion to hydrocarbons (MATH). Journal of Microbiological Methods, 1993, 18(1): 61–68
doi: 10.1016/0167-7012(93)90072-P
65 Makin S A, Beveridge T J. The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology-UK, 1996, 142(2): 299–307
doi: 10.1099/13500872-142-2-299
66 Palomar J, Leranoz A M, Vinas M. Serratia marcescens adherence—The effect of O-antigen presence. Microbios, 1995, 81(327): 107–113
67 Williams P, Lambert P A, Haigh C G, Brown M R W. The influence of the O-antigens and k-antigens of Klebsiella aerogenes on surface hydrophobicitiy and susceptibility to phagocytosis and antimicrobial agents. Journal of Medical Microbiology, 1986, 21(2): 125–132
doi: 10.1099/00222615-21-2-125
68 Hua Z Z, Chen J, Lun S Y, Wang X R. Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes. Water Research, 2003, 37(17): 4143–4150
doi: 10.1016/S0043-1354(03)00380-4
69 Aronson D,Citra M,Shuler K,Printup H,Howard P H.Aerobic Biodegradation of Organic Chemicals in Environmental Media: a Summary of Field and Laboratory Studies. New York: EPA Reports, Office of Reserch and Development Athens GA 30605, 1999
70 Bressleer D C, Gray M R. Transport and reaction processes in bioremediation of organic contaminants. 1.Review of bacterial degradation and transport. International Journal of Chemical Reactor Engineering, 2003, 1(R3): 1–16
doi: 10.2202/1542-6580.1027
71 Carrière B, Legrimellec C. Effects of benzyl alcohol on enzyme activities and D-glucose transport in kidney brush border membranes. Biochimica Et Biophysica Acta-Biomembranes, 1986, 857(2): 131–138
doi: 10.1016/0005-2736(86)90340-8
72 Green D E, Fry M, Blondin G A. Phophlipids as the molecular instruments of ion and solute transport in biological membranes. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77(1): 257–261
doi: 10.1073/pnas.77.1.257
73 Marcelino J, Lima J, Reis S, Matos C. Assessing the effects of surfactants on the physical properties of liposome membranes. Chemstry and Physics of Lipids, 2007, 146(2): 94–103
doi: 10.1016/j.chemphyslip.2006.12.008
74 Gregory G.Liposome Technology. New York: CRC Press, 2007
75 Bombelli C, Giansanti L, Luciani P, Mancini G. Gemini surfactant based carriers in gene and drug delivery. Current Medicinal Chemstry, 2009, 16(2): 171–183
doi: 10.2174/092986709787002808
76 Van Hamme J D, Singh A, Ward O P. Physiological aspects.Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnology Advances, 2006, 24(6): 604–620
doi: 10.1016/j.biotechadv.2006.08.001
77 Helenius A, Simons K. Solubilization of membranes by detergents. Biochimica Et Biophysica Acta-Biomembranes, 1975, 415(1): 29–79
doi: 10.1016/0304-4157(75)90016-7
78 Shoji Y, Igarashi T, Nomura H, Eitoku T, Katayama K. Liposome solubilization induced by surfactant molecules in a microchip. Analytical Sciences, 2012, 28(4): 339–343
doi: 10.2116/analsci.28.339
79 Sujatha J, Mishra A K. Effect of ionic and neutral surfactants on the properties of phospholipid vesicles: Investigation using fluorescent probes. Journal of Photochemistry and Photobiology a-Chemistry, 1997, 104(1–3): 173–178
80 Asther M, Corrieu G, Drapron R, Odier E. Effect of Tween 80 and oleic acid on ligninase production by Phanerochaete chrysosporium INA-12. Enzyme and Microbial Technology, 1987, 9(4): 245–249
doi: 10.1016/0141-0229(87)90024-X
81 Guerin W F, Jones G E. Mineralization of phenanthrene by a Mycobacterium sp. Applied and Environmental Microbiology, 1988, 54(4): 937–944
82 Van der werf M J; Hartmans S, Vandentweel W J J. Permeabilization and lysis of Pseudomonas pseudoalcaligenes cells by Triton X-100 for efficient production of D-malate. Applied Microbiology and Biotechnology, 1995, 43(4): 590–594
83 Nazari M, Kurdi M, Heerklotz H. Classifying surfactants with respect to their effect on lipid membrane order. Biophysical Journal, 2012, 102(3): 498–506
doi: 10.1016/j.bpj.2011.12.029
84 Schnaitm C. Solubilization of cytoplasmic membrane of Escherichia coli by Triton X-100. Journal of Bacteriology, 1971, 108(1): 545
85 Hildebrand A, Beyer K, Neubert R, Garidel P, Blume A. Temperature dependence of the interaction of cholate and deoxycholate with fluid model membranes and their solubilization into mixed micelles. Colloids Surface B-Biointerfaces, 2003, 32(4): 335–351
doi: 10.1016/j.colsurfb.2003.08.001
86 Keller S, Tsamaloukas A, Heerklotz H. A quantitative model describing the selective solubilization of membrane domains. Journal of American Chemical Society, 2005, 127(32): 11469–11476
doi: 10.1021/ja052764q
87 Hengstenberg W. Solubilization of the membrane bound lactose specific component of the staphylococcal pep dependant phosphotransferase system. FEBS Letters, 1970, 8(5): 277–280
doi: 10.1016/0014-5793(70)80286-1
88 Umbreit J N. Relation of detergent HLB number to solubilization and stabilization of D-alanine carboxypeptidase from bacillus subtilis membranes. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(10): 2997–3001
doi: 10.1073/pnas.70.10.2997
89 Karlsson A, Parales J V, Parales R E, Gibson D T, Eklund H, Ramaswamy S. Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron. Science, 2003, 299(5609): 1039–1042
doi: 10.1126/science.1078020
90 Poulos T L. Cytochrome P450. Current Opinion in Structural Biology, 1995, 5(6): 767–774
doi: 10.1016/0959-440X(95)80009-3
91 Schlichting I, Berendzen J, Chu K, Stock A M, Maves S A, Benson D E, Sweet B M, Ringe D, Petsko G A, Sligar S G. The catalytic pathway of cytochrome P450cam at atomic resolution. Science, 2000, 287(5458): 1615–1622
doi: 10.1126/science.287.5458.1615
92 Rosenzweig A C, Frederick C A, Lippard S J, Nordlund P. Crystal structure of a bacterial non-heme iron hydroxylase that catalyzes the biological oxidation of methane. Nature, 1993, 366(6455): 537–543
doi: 10.1038/366537a0
93 Spain J C. Biodegradation of nitroaromatic compounds. Annual Review of Microbiology, 1995, 49(1): 523–555
doi: 10.1146/annurev.mi.49.100195.002515
94 Wallar B J, Lipscomb J D. Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chemical Review, 1996, 96(7): 2625–2657
doi: 10.1021/cr9500489
95 Gibson D T, Parales R E. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Current Opinion in Biotechnology, 2000, 11(3): 236–243
doi: 10.1016/S0958-1669(00)00090-2
96 Carredano E, Karlsson A, Kauppi B, Choudhury D, Parales R E, Parales J V, Lee K, Gibson D T, Eklund H, Ramaswamy S. Substrate binding site of naphthalene 1,2-dioxygenase: Functional implications of indole binding. Journal of Molecular Biology, 2000, 296(2): 701–712
doi: 10.1006/jmbi.1999.3462
97 Cerniglia C E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 1992, 3(2–3): 351–368
doi: 10.1007/BF00129093
98 Baboshin M, Akimov V, Baskunov B, Born T L, Khan S U, Golovleva L. Conversion of polycyclic aromatic hydrocarbons by Sphingomonas sp. VKM B-2434. Biodegradation, 2008, 19(4): 567–576
doi: 10.1007/s10532-007-9162-2
99 Dean-Ross D, Moody J D, Freeman J P, Doerge D R, Cerniglia C E. Metabolism of anthracene by a Rhodococcus species. FEMS Microbiological Letters, 2001, 204(1): 205–211
doi: 10.1111/j.1574-6968.2001.tb10886.x
100 Kauppi B, Lee K, Carredano E, Parales R E, Gibson D T, Eklund H, Ramaswamy S. Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase. Structure, 1998, 6(5): 571–586
doi: 10.1016/S0969-2126(98)00059-8
101 Cho J, Jeon S, Wilson S A, Liu L V, Kang E A, Braymer J J, Lim M H, Hedman B, Hodgson K O, Valentine J S, Solomon E I, Nam W. Structure and reactivity of a mononuclear non-haem iron(III)-peroxo complex. Nature, 2011, 478(7370): 502–505
doi: 10.1038/nature10535
102 Volkering F, Breure A M, Rulkens W H. Microbiological aspects of surfactant use for biological soil remediation. Biodegradation, 1997, 8(6): 401–417
doi: 10.1023/A:1008291130109
103 Schilling M, Haetzelt F, Schwab W, Schrader J. Impact of surfactants on solubilization and activity of the carotenoid cleavage dioxygenase, AtCCD1, in an aqueous micellar reaction system. Biotechnological Letters, 2008, 30(4): 701–706
doi: 10.1007/s10529-007-9585-1
104 Su J H, Xu J H, Wang Z L. Improving enzymatic production of ginsenoside Rh-2 from Rg(3) by using nonionic surfactant. Applied Biochemistry and Biotechnology, 2010, 160(4): 1116–1123
doi: 10.1007/s12010-009-8570-7
105 Louvado A, Coelho F, Domingues P, Santos A L, Gomes N C M, Almeida A, Cunha A. Isolation of surfactant-resistant pseudomonads from the estuarine surface microlayer. Journal of Microbiology and Biotechnology, 2012, 22(3): 283–291
doi: 10.4014/jmb.1110.10041
106 Nacke C, Schrader J. Micelle based delivery of carotenoid substrates for enzymatic conversion in aqueous media. Journal of Molecular Catalysis B-Enzymatic, 2012, 77: 67–73
doi: 10.1016/j.molcatb.2012.01.010
107 Nguyen N T, Hsieh H C, Lin Y W, Huang S L. Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes. Bioresource Technology, 2011, 102(5): 4232–4240
doi: 10.1016/j.biortech.2010.12.067
108 Marlowe E M, Wang J M, Pepper I L, Maier R M. Application of a reverse transcription-PCR assay to monitor regulation of the catabolic nahAc gene during phenanthrene degradation. Biodegradation, 2002, 13(4): 251–260
doi: 10.1023/A:1021221104425
109 Goncalves A M D, Aires-Barros M R, Cabral J M S. Interaction of an anionic surfactant with a recombinant cutinase from Fusarium solani pisi: a spectroscopic study. Enzyme and Microbial Technology, 2003, 32(7): 868–879
doi: 10.1016/S0141-0229(03)00054-1
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[4] Paul Olusegun Bankole, Kirk Taylor Semple, Byong-Hun Jeon, Sanjay Prabhu Govindwar. Enhanced enzymatic removal of anthracene by the mangrove soil-derived fungus, Aspergillus sydowii BPOI[J]. Front. Environ. Sci. Eng., 2020, 14(6): 113-.
[5] Lingchen Kong, Xitong Liu. Emerging electrochemical processes for materials recovery from wastewater: Mechanisms and prospects[J]. Front. Environ. Sci. Eng., 2020, 14(5): 90-.
[6] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[7] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[8] Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Front. Environ. Sci. Eng., 2020, 14(4): 58-.
[9] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[10] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[11] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[12] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[13] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[14] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[15] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed