Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (3) : 385-393    https://doi.org/10.1007/s11783-014-0648-y
RESEARCH ARTICLE
Comparing the adsorption behaviors of Cd, Cu and Pb from water onto Fe-Mn binary oxide, MnO2 and FeOOH
Wei XU1,2,Huachun LAN1,Hongjie WANG3,Hongming LIU1,Jiuhui QU1,*()
1. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2. Graduate University of Chinese Academy of Sciences, Beijing 100039, China
3. College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
 Download: PDF(486 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The adsorption potential of FMBO, FeOOH, MnO2 for the removal of Cd2+, Cu2+ and Pb2+ in aqueous systems was investigated in this study. Comparing to FMBO and FeOOH, MnO2 offered a much higher removal capacity towards the three metal ions. The maximal adsorption capacity of MnO2 for Cd2+, Cu2+ and Pb2+ were 1.23, 2.25 and 2.60 mmol·g-1, respectively. And that for FMBO were 0.37, 1.13, and 1.18 mmol·g-1 and for FeOOH were 0.11, 0.86 and 0.48 mmol·g-1, respectively. The adsorption behaviors of the three metal ions on the three adsorbents were all significantly affected by pH values and heavy metal removal efficiency increased with pH increased. The Langmuir and Freundlich adsorption models were used to describe the adsorption equilibrium of the three metal ions onto the three adsorbents. Results showed that the adsorption equilibrium data fitted well to Langmuir isotherm and this indicated that adsorption of metal ions occurred on the three metal oxides adsorbents limited to the formation of a monolayer. More negative charged of MnO2 surface than that of FMBO and FeOOH could be ascribed by lower pHiep of MnO2 than that of FMBO and FeOOH and this could contribute to more binding sites on MnO2 surface than that of FMBO and FeOOH. The higher metal ions uptake by MnO2 than FMBO and FeOOH could be well explained by the surface charge mechanism.

Keywords heavy metals      Fe-Mn binary oxide      manganese dioxide      ferric hydroxide      adsorption     
Corresponding Author(s): Jiuhui QU   
Online First Date: 18 February 2014    Issue Date: 30 April 2015
 Cite this article:   
Wei XU,Huachun LAN,Hongjie WANG, et al. Comparing the adsorption behaviors of Cd, Cu and Pb from water onto Fe-Mn binary oxide, MnO2 and FeOOH[J]. Front. Environ. Sci. Eng., 2015, 9(3): 385-393.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0648-y
https://academic.hep.com.cn/fese/EN/Y2015/V9/I3/385
kinetic model equation parameters
Pseudo-first-order equation qt = qmax-exp(ln(qmax)-kt) qt is the amount of heavy metal desorbed at time tqmax is the maximum amount of heavy metal desorbed at equilibriumk and a are constants
Elovich qt=a+klnt
Parabolic diffusion qt = a+kt0.5
power function qt = atk
Pseudo-second-order qt=qmax+qmax/(kqmaxt-1)
Tab.1  Kinetic equations tested to describe time-dependent Cd, Cu and Pb adsorption to MnO2, FMBO, and FeOOH
kinetic model equation parameters
Langmuir qe = qmaxKLCe/(1+KLCe) qe is the amount of heavy metal adsorbed on the adsorbents (mmol·g-1). Ce is the equilibrium heavy metal concentration in solution phase (mmol·L-1). KL is the equilibrium adsorption constant related to the affinity of binding sites (L·mmol-1) and qmax is the maximum amount of heavy metal per unit weight of adsorbent for complete monolayer coverage
Freundlich q e = K F C e n qe and Ce are previously denoted. KF is roughly an indicator of the adsorption capacity and n is the heterogeneity factor which has a lower value for more heterogeneous surfaces
Tab.2  Langmuir and Freundlich isotherm equations for Cd, Cu and Pb adsorption by MnO2, FMBO, and FeOOH
Fig.1  XRD diffraction pattern of FMBO, FeOOH and MnO2
Fig.2  Zeta potential of FMBO, FeOOH and MnO2
Fig.3  Kinetics of Cd (a), Cu (b) and Pb (c) removal by FMBO, FeOOH and MnO2. Adsorbents concentration was 200 mg·L-1 for Cd and Cu and 100 mg·L-1 for Pb. pH was 6.0±0.1 for Cu and Pb and 8.0±0.1 for Cd. Initial Cd and Pb concentration was 0.2 mmol·L-1 and Cu concentrations was 0.5 mmol·L-1
Condition Pseudo-first-order equation Elovich Parabolic diffusion Power function Pseudo-second-order
qmax/(mmol·g-1) k/(mmol·g-1·h-1) R2 k R2 k R2 k R2 qmax k R2
Cd MnO2 1.35 1.52 0.75 0.18 0.94 0.14 0.66 0.15 0.88 1.45 1.67 0.91
FMBO 0.89 0.46 0.95 0.15 0.93 0.12 0.72 0.24 086 0.98 0.65 0.97
FeOOH 0.56 0.45 0.99 0.11 0.92 0.08 0.65 0.26 0.80 0.63 0.93 0.98
Cu MnO2 1.51 1.44 0.46 0.18 0.97 0.15 0.75 0.12 0.94 1.66 0.63 0.75
FMBO 0.96 0.33 0.87 0.16 0.96 0.13 0.74 0.22 0.90 1.05 0.23 0.95
FeOOH 0.71 0.33 0.84 0.11 0.95 0.18 0.75 0.21 0.90 0.76 0.33 0.92
Pb MnO2 1.86 4.85 0.56 0.14 0.73 0.95 0.36 0.075 0.67 1.95 4.27 0.84
FMBO 0.91 0.77 0.94 0.15 0.89 0.11 0.61 0.20 0.80 0.99 1.11 0.96
FeOOH 0.58 0.18 0.97 0.11 0.93 0.10 0.91 0.39 0.94 0.67 0.31 0.99
Tab.3  The kinetic model parameters for the adsorption of Cd on FMBO, FeOOH, MnO2 at pH 8.0 and T= 20±1°C and for the adsorption of Cu and Pb on FMBO, FeOOH, MnO2 at pH 6.0 and T= 20±1°C
Fig.4  Effects of pH on Cd, Cu, and Pb removal at fixed initial heavy metal concentration (0.4 mmol·L-1) (200 mg·L-1 suspension)
Fig.5  Adsorption isotherms for Cd2+(a), Cu2+(b) and Pb2+(c) by FMBO, FeOOH and MnO2 in a 200 mg·L-1 suspension at pH 7.0±0.1 for Cd and 6.0±0.1 for Cu and Pb
Adsorbent Langmuir model Freundlich model
qm/(mmol·g-1) KL/(L·mg-1) R2 KF n R2
Cd MnO2 1.23 122.5 0.87 1.86 4.5 0.82
FMBO 0.37 14.2 0.91 0.48 2.7 0.80
FeOOH 0.11 8.9 0.96 0.13 2.4 0.88
Cu MnO2 2.25 189.8 0.928 3.59 4.22 0.837
FMBO 1.13 55.4 0.940 1.53 4.10 0.844
FeOOH 0.86 14.0 0.929 1.14 2.54 0.877
Pb MnO2 2.60 195.1 0.490 4.07 4.45 0.470
FMBO 1.18 234.4 0.944 1.82 4.06 0.940
FeOOH 0.48 43.5 0.806 0.63 4.04 0.712
Tab.4  Langmuir and Freundlich isotherm constants for Cd adsorption by FMBO, FeOOH and MnO2 at pH 7.0 and T = 20±1°C and for Cu and Pb adsorption at pH 6.0 and T = 20±1°C
Fig.6  FTIR spectra of (a) MnO2, MnO2 + Cd, MnO2 + Cu and MnO2 + Pb; (b) FMBO, FMBO+ Cd, FMBO+ Cu, and FMBO+ Pb; (c) FeOOH, FeOOH+ Cd, FeOOH+ Cu, and FeOOH+ Pb. Initial Cd, Cu, and Pb concentration was 0.5 mmol·L-1 and adsorbents concentration of 200 mg·L-1 was used. Solution pH was maintained as 6.0 by intermittent addition of dilute HNO3 or KOH
1 Jang S H, Jeong Y G, Min B G, Lyoo W S, Lee S C. Preparation and lead ion removal property of hydroxyapatite/polyacrylamide composite hydrogels. Journal of Hazardous Materials, 2008, 159(2–3): 294–299
https://doi.org/10.1016/j.jhazmat.2008.02.018 pmid: 18430514
2 Aziz H A, Adlan M N, Ariffin K S. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone. Bioresource Technology, 2008, 99(6): 1578–1583
https://doi.org/10.1016/j.biortech.2007.04.007 pmid: 17540556
3 Liu C K, Bai R B, San L Q. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: behaviors and mechanisms. Water Research, 2008, 42(6–7): 1511–1522
https://doi.org/10.1016/j.watres.2007.10.031 pmid: 18035389
4 Iemma F, Cirillo G, Sipizzirri U G, Puoci F, Parisi O I, Picci N. Removal of metal ions from aqueous solution by chelating polymeric microspheres bearing phytic acid derivatives. European Polymer Journal, 2008, 44(4): 1183–1190
https://doi.org/10.1016/j.eurpolymj.2008.01.024
5 Gurgel L V A, Gil L F. Adsorption of Cu(II), Cd(II) and Pb(II) from aqueous single metal solutions by succinylated twice-mercerized sugarcane bagasse functionalized with triethylenetetramine. Water Research, 2009, 43(18): 4479–4488
https://doi.org/10.1016/j.watres.2009.07.017 pmid: 19656543
6 Crist R H, Martin J R, Chanko J, Crist D R. Uptake of metals on peat moss: An ion-exchange process. Environmental Science and Technology, 1996, 30(8): 2456–2461
https://doi.org/10.1021/es950569d
7 Lo S L, Jeng H T, Lai C H. Characteristics and adsorption properties of iron-coated sand. Water Science and Technology, 1997, 35(7): 63–70
https://doi.org/10.1016/S0273-1223(97)00115-7
8 Ngah W S W, Endud C S, Mayanar R. Removal of copper(II) ions from aqueous solution onto chitoasn and cross-linked chitosan beads. Reactive and Functional Polymers, 2002, 50(2): 181–191
https://doi.org/10.1016/S1381-5148(01)00113-4
9 Hsieh S H, Horng J J. Adsorption behavior of heavy metal ions by carbon nanotubes grown on microsized Al2O3 particles. Journal of University of Science and Technology Beijing, Mineral, Metallurgy. Material, 2007, 14(1): 77–84
10 Elliott H A, Liberati M B, Huang C P. Competitive adsorption of heavy metals by soils. Journal of Environmental Quality, 1986, 15(3): 215–219
https://doi.org/10.2134/jeq1986.00472425001500030002x
11 Corapcioglu M O, Huang C P. The adsorption of heavy metals onto hydrous activated carbon. Water Research, 1987, 21(9): 1031–1044
https://doi.org/10.1016/0043-1354(87)90024-8
12 Parks S W, Huang C P. The adsorption characteristics of some heavy metal ions onto hydrous CdSs surface. Journal of Colloid and Interface Science, 1989, 128(1): 245–257
https://doi.org/10.1016/0021-9797(89)90403-7
13 Han R P, Zou W H, Zhang Z P, Shi J, Yang J J. Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand I. Characterization and kinetic study. Journal of Hazardous Materials, 2006, 137(1): 384–395
https://doi.org/10.1016/j.jhazmat.2006.02.021 pmid: 16603312
14 Al-Sewailem M S, Khaled E M, Mashhady A S. Retention of copper by desert sands coated with ferric hydroxides. Geoderma, 1999, 89(3–4): 249–258
https://doi.org/10.1016/S0016-7061(98)00082-2
15 Lee S W, Anderson P R. EXAFS study of Zn sorption mechanisms on hydrous ferric oxide over extended reaction time. Journal of Colloid and Interface Science, 2005, 286(1): 82–89
https://doi.org/10.1016/j.jcis.2005.01.005 pmid: 15848405
16 Zhang G S, Qu J H, Liu H J, Liu R P, Wu R C. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Water Research, 2007, 41(9): 1921–1928
https://doi.org/10.1016/j.watres.2007.02.009 pmid: 17382991
17 Zhang G S, Liu H J, Liu R P, Qu J H. Removal of phosphate from water by a Fe-Mn binary oxide adsorbent. Journal of Colloid and Interface Science, 2009, 335(2): 168–174
https://doi.org/10.1016/j.jcis.2009.03.019 pmid: 19406416
18 Chang F F, Qu J H, Liu R P, Zhao X, Lei P J. Practical performance and its efficiency of arsenic removal from groundwater using Fe-Mn binary oxide. Journal of Environmental Sciences (China), 2010, 22(1): 1–6
https://doi.org/10.1016/S1001-0742(09)60067-X pmid: 20397380
19 Shirvani M, Shariatmadari H, Kalbasi M. Kinetics of cadmium desorption from fibrous silicate clay minerals: influence of organic ligands and aging. Applied Clay Science, 2007, 37(1–2): 175–184
https://doi.org/10.1016/j.clay.2006.12.010
20 Wang D Z, Jiang X, Rao W, He J Z. Kinetics of soil cadmium desorption under simulated acid rain. Ecological Complexity, 2009, 6(4): 432–437
https://doi.org/10.1016/j.ecocom.2009.03.010
21 Sheng P X, Ting Y P, Chen J P, Hong L. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Journal of Colloid and Interface Science, 2004, 275(1): 131–141
https://doi.org/10.1016/j.jcis.2004.01.036 pmid: 15158390
22 Nieboer E, McBryde W A E. Free-energy relationships in coordination chemistry. III. A Comprehensive index to complex stability. Canadian Journal of Chemistry, 1973, 51(15): 2512–2524
https://doi.org/10.1139/v73-379
23 Mendes L F, Bastos E L, Stevani C V. Prediction of metal cation toxicity to the bioluminescent fungus Gerronema viridilucens. Environmental Toxicology and Chemistry, 2010, 29(10): 2177–2181
https://doi.org/10.1002/etc.283 pmid: 20872679
24 Iqbal M, Edyvean R G I. Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium. Minerals Engineering, 2004, 17(2): 217–223
https://doi.org/10.1016/j.mineng.2003.08.014
25 Zhang G S, Qu J H, Liu H J, Liu R P, Li G T. Removal mechanism of As(III) by a novel Fe-Mn binary oxide adsorbent: oxidation and sorption. Environmental Science and Technology, 2007, 41(13): 4613–4619
https://doi.org/10.1021/es063010u pmid: 17695905
26 Zhang Y, Yang M, Dou X M, He H, Wang D S. Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: role of surface properties. Environmental Science and Technology, 2005, 39(18): 7246–7253
https://doi.org/10.1021/es050775d pmid: 16201655
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[4] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[5] Jianmei Zou, Jianzhi Huang, Huichun Zhang, Dongbei Yue. Evolution of humic substances in polymerization of polyphenol and amino acid based on non-destructive characterization[J]. Front. Environ. Sci. Eng., 2021, 15(1): 5-.
[6] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[7] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[8] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[9] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[10] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[11] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[12] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[13] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[14] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[15] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed