Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (5) : 703-709    https://doi.org/10.1007/s11783-014-0649-x
RESEARCH ARTICLE
Comparison of growth and lipid accumulation properties of two oleaginous microalgae under different nutrient conditions
Qiao ZHANG,Yu HONG()
College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
 Download: PDF(1821 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study compared the growth and lipid accumulation properties of two oleaginous microalgae, namely, Scenedesmus sp. LX1 and Chlorella sp. HQ, under different nutrient conditions. Both algal species obtained the highest biomass, lipid content and lipid yield under low-nutrient conditions (mBG11 medium). The biomass, lipid content and lipid yield of Scenedesmus sp. LX1 were 0.42 g·L–1, 22.5% and 93.8 mg·L–1, respectively. These values were relatively higher than those of Chlorella sp. HQ (0.30 g·L–1, 17.1% and 51.3 mg·L–1, respectively). These algae were then cultivated in an SE medium that contained more nutrients; as a result, the biomass and lipid yield of Scenedesmus sp. LX1 reduced more significantly than those of Chlorella sp. HQ. Opposite results were observed in lipid and triacylglycerols (TAGs) contents. The cell sizes of both algal species under low-nutrient conditions were larger than those under high-nutrient conditions. Chlorella sp. HQ cells did not aggregate, but Scenedesmus sp. LX1 cells flocculated easily, particularly under low-nutrient conditions. In summary, low-nutrient conditions favour the growth and lipid production of both algae, but Scenedesmus sp. LX1 outperforms Chlorella sp. HQ.

Keywords Scenedesmus sp. LX1      Chlorella sp. HQ      growth rate      algal biomass      lipid accumulation      triacylglycerols (TAGs)     
Corresponding Author(s): Yu HONG   
Issue Date: 20 June 2014
 Cite this article:   
Qiao ZHANG,Yu HONG. Comparison of growth and lipid accumulation properties of two oleaginous microalgae under different nutrient conditions[J]. Front.Environ.Sci.Eng., 2014, 8(5): 703-709.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0649-x
https://academic.hep.com.cn/fese/EN/Y2014/V8/I5/703
Fig.1  Micrographs of Scenedesmus sp. LX1 (a) and Chlorella sp. HQ (b)
ingredientsSEmBG11
NaNO3250 mg·L–191.1 mg·L–1
K2HPO475 mg·L–111.0 mg·L–1
MgSO4·7H2O75 mg·L–137.5 mg·L–1
CaCl2·2H2O25 mg·L–118 mg·L–1
KH2PO4175 mg·L–1-
NaCl25 mg·L–1-
FeCl3·6H2O5 mg·L–1-
FeCl30.81 mg·L–1-
Na2EDTA10 mg·L–10.5 mg·L–1
Na2CO3-10 mg·L–1
citric acid-3 mg·L–1
ferric ammonium citrate-3 mg·L–1
H3BO32.86 mg·L–12.86 mg·L–1
MnCl2·4H2O1.81 mg·L–11.81 mg·L–1
ZnSO4·7H2O0.22 mg·L–10.22 mg·L–1
CuSO4·5H2O0.079 mg·L–10.079 mg·L–1
(NH4)6Mo7O24·4H2O0.39 mg·L–10.39 mg·L–1
Co(NO3)2·6H2O-0.049 mg·L–1
Tab.1  Ingredients of the two culture media
Fig.2  Growth curves of Scenedesmus sp. LX1 (a) and Chlorella sp. HQ (b) in SE and mBG11 culture media
Fig.3  Algal biomass of Scenedesmus sp. LX1 and Chlorella sp. HQ in SE and mBG11 culture media
Fig.4  Micrographs of the algal cells after 24 d of cultivation (From (a) to (d): Scenedesmus sp. LX1 in SE and mBG11 media; Chlorella sp. HQ in SE and mBG11 media)
Fig.5  Lipid content per algal biomass of Scenedesmus sp. LX1 and Chlorella sp. HQ in SE and mBG11 culture media
Fig.6  Lipid yield of Scenedesmus sp. LX1 and Chlorella sp. HQ in SE and mBG11 culture media
Fig.7  TAGs content per lipid of Scenedesmus sp. LX1 and Chlorella sp. HQ in SE and mBG11 culture media
1 ChistiY. Biodiesel from microalgae. Biotechnology Advances, 2007, 25(3): 294-306
doi: 10.1016/j.biotechadv.2007.02.001 pmid: 17350212
2 DengX D, LiY J, FeiX W. Microalgae: a promising feedstock for biodiesel. African Journal of Microbiology Research, 2009, 3(13): 1008-1014
3 SchenkP M, Thomas-HallS R, StephensE, MarxU C, MussgnugJ H, PostenC, KruseO, HankamerB. Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Research, 2008, 1(1): 20-43
doi: 10.1007/s12155-008-9008-8
4 MataT M, MartinsA A, CaetanoN S. Microalgae for biodiesel production and other applications: a review. Renewable & Sustainable Energy Reviews, 2010, 14(1): 217-232
doi: 10.1016/j.rser.2009.07.020
5 GriffithsM J, HarrisonS T L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 2009, 21(5): 493-507
doi: 10.1007/s10811-008-9392-7
6 GouveiaL, OliveiraA C. Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology & Biotechnology, 2009, 36(2): 269-274
doi: 10.1007/s10295-008-0495-6 pmid: 18982369
7 PittmanJ K, DeanA P, OsundekoO. The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 2011, 102(1): 17-25
doi: 10.1016/j.biortech.2010.06.035 pmid: 20594826
8 LiX, HuH Y, KeG, SunY X. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 2010, 101(14): 5494-5500
doi: 10.1016/j.biortech.2010.02.016 pmid: 20202827
9 ConvertiA, CasazzaA A, OrtizE Y, PeregoP, Del BorghiM. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 2009, 48(6): 1146-1151
doi: 10.1016/j.cep.2009.03.006
10 SolovchenkoA E, Khozin-GoldbergI, Didi-CohenS, Didi-CohenS, CohenZ, MerzlyakM N. Effects of light and nitrogen starvation on the content and composition of carotenoids of the green microalga Parietochloris incisa. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology, 2008, 55(4): 455-462
doi: 10.1134/S1021443708040043
11 LiX, HuH Y, GanK, YangJ. Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp. LX1 under different kinds of nitrogen sources. Ecological Engineering, 2010b, 36(4): 379-381
doi: 10.1016/j.ecoleng.2009.11.003
12 ZhangQ, HongY. Effects of stationary phase elongation and initial nitrogen and phosphorus concentrations on the growth and lipid-producing potential of Chlorella sp. HQ. Journal of Applied Phycology, 2013
doi: 10.1007/s10811-013-0091-7
13 State Environmental Protection Administration. Monitoring Method of Water and Wastewater, 4th ed. Beijing: China Environmental Science Press; 2002, 105, 246-248, 255-257
14 BlighE G, DyerW J. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 1959, 37(8): 911-917
doi: 10.1139/o59-099 pmid: 13671378
15 DouX, LuX H, LuM Z, YuL S, XueR, JiJ B. The effects of trace elements on the lipid productivity and fatty acid composition of Nannochloropis oculata. Journal of Renewable Energy, 2013, 671545: 1-6. Available online at http://dx.doi.org/10.1155/2013/671545 (accessed <month>December</month><day>29</day>, 2013)
16 ZhouX P, XiaL, GeH M, ZhangD L, HuC X. Feasibility of biodiesel production by microalgae Chlorella sp. (FACHB-1748) under outdoor conditions. Bioresource Technology, 2013, 138: 131-135
doi: 10.1016/j.biortech.2013.03.169 pmid: 23612171
17 LiuZ Y, WangG C, ZhouB C. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 2008, 99(11): 4717-4722
doi: 10.1016/j.biortech.2007.09.073 pmid: 17993270
18 YangK. Selection of high-level lipid microalgae and effect of different culture conditions on the fatty acid contents and components. Dissertation for the Master’s Degree. Suzhou: Su Zhou University, 2009 (in Chinese)
19 LiX. Coupled technology of advanced N, P removal in wastewater treatment and microalgal bioenergy production. Dissertation for the Doctoral Degree. Beijing: Tsinghua University, 2011 (in Chinese)
20 WangB, LiY, WuN, LanC Q. CO(2) bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 2008, 79(5): 707-718
doi: 10.1007/s00253-008-1518-y pmid: 18483734
21 GriffithsE W. Removal and utilization of wastewater nutrients for algae biomass. Dissertation for the Doctoral Degree. Utah: Utah State University, 2009
22 YuY, HuH Y, LiX, WuY H, ZhangX, JiaS L. Accumulation characteristics of soluble algal products (SAP) by a freshwater microalga Scenedesmus sp. LX1 during batch cultivation for biofuel production. Bioresource Technology, 2012, 110: 184-189
doi: 10.1016/j.biortech.2011.11.023 pmid: 22322147
23 SuY Y, MennerichA, UrbanB. Comparison of nutrient removal capacity and biomass settleability of four high-potential microalgal species. Bioresource Technology, 2012, 124: 157-162
doi: 10.1016/j.biortech.2012.08.037 pmid: 22995160
24 RodolfiL, Chini ZittelliG, BassiN, PadovaniG, BiondiN, BoniniG, TrediciM R. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 2009, 102(1): 100-112
doi: 10.1002/bit.22033 pmid: 18683258
25 CakmakT, AngunP, DemirayY E, OzkanA D, ElibolZ, TekinayT. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnology and Bioengineering, 2012, 109(8): 1947-1957
doi: 10.1002/bit.24474 pmid: 22383222
26 SiautM, CuinéS, CagnonC, FesslerB, NguyenM, CarrierP, BeylyA, BeissonF, TriantaphylidèsC, Li-BeissonY H, PeltierG. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnology, 2011, 11(1): 7-22
doi: 10.1186/1472-6750-11-7 pmid: 21255402
27 HuQ, SommerfeldM, JarvisE, GhirardiM, PosewitzM, SeibertM, DarzinsA. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 2008, 54(4): 621-639
doi: 10.1111/j.1365-313X.2008.03492.x pmid: 18476868
[1] Xiaoya Liu, Yu Hong, Peirui Liu, Jingjing Zhan, Ran Yan. Effects of cultivation strategies on the cultivation of Chlorella sp. HQ in photoreactors[J]. Front. Environ. Sci. Eng., 2019, 13(5): 78-.
[2] Kishore Gopalakrishnan, Javad Roostaei, Yongli Zhang. Mixed culture of Chlorella sp. and wastewater wild algae for enhanced biomass and lipid accumulation in artificial wastewater medium[J]. Front. Environ. Sci. Eng., 2018, 12(4): 14-.
[3] Yu Liu, Qiao Zhang, Yu Hong. Formation of disinfection byproducts from accumulated soluble products of oleaginous microalga after chlorination[J]. Front. Environ. Sci. Eng., 2017, 11(6): 1-.
[4] Xiaojing SHEN,Junying SUN,Xiaoye ZHANG,Yangmei ZHANG,Lu ZHANG,Ruxia FAN. Key features of new particle formation events at background sites in China and their influence on cloud condensation nuclei[J]. Front. Environ. Sci. Eng., 2016, 10(5): 5-.
[5] Jingjing ZHAN,Qiao ZHANG,Momei QIN,Yu HONG. Selection and characterization of eight freshwater green algae strains for synchronous water purification and lipid production[J]. Front. Environ. Sci. Eng., 2016, 10(3): 548-558.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed