Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (3) : 394-401    https://doi.org/10.1007/s11783-014-0653-1
RESEARCH ARTICLE
Pharmaceutical compounds in aquatic environment in China: locally screening and environmental risk assessment
Yongshan CHEN1,2(), Xiuping XI1, Gang YU2, Qiming CAO2, Bin WANG2, François VINCE2, Youwei HONG1
1. Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
2. School of Environment, THU-VEOLIA Joint Research Center for Advanced Environmental Technology, Tsinghua University, Beijing 100084, China
 Download: PDF(151 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An environmental risk assessment was performed for pharmaceutical compounds present in the aquatic environment of China. Predicted environmental concentration (PEC) of the compounds were calculated according to European Medicines Evaluation Agency (EMEA) guidelines. Available ecotoxicological data compromised by applying a very conservative assessment factor (AF) were employed to calculate the predicted no-effect concentration (PNEC). The screening principle and the risk assessment were based on risk quotient (RQ), which derived from the PEC and related PNEC values. PEC results indicated that all the compounds except sulfadimethoxine and levocarnitine, should carry out phase II risk assessment in EMEA guideline. RQ values suggested that more than 36 pharmaceuticals may be imposed health threats to the aquatic environment; especially the antibiotic therapeutic class including amoxicillin, sulfasalazine, trimethoprim, oxytetracycline and erythromycin showed high RQ values. These substances with high RQ value (RQ≥1) were regarded as top-priority pharmaceuticals for control in the aquatic environment of China. However, the antibiotic substances which had low risk quotient (RQ <1), should be reassessed by its potentially induced resistance under low concentration in future.

Keywords pharmaceuticals      aquatic environment      risk assessment      aquatic toxicity      risk quotient     
Corresponding Author(s): Yongshan CHEN   
Online First Date: 14 February 2014    Issue Date: 30 April 2015
 Cite this article:   
Yongshan CHEN,Xiuping XI,Gang YU, et al. Pharmaceutical compounds in aquatic environment in China: locally screening and environmental risk assessment[J]. Front. Environ. Sci. Eng., 2015, 9(3): 394-401.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0653-1
https://academic.hep.com.cn/fese/EN/Y2015/V9/I3/394
Fig.1  Comparison between the measured environmental concentration (MEC) and predicted environmental concentration (PEC)
Pharmaceuticals PEC1 PEC2 PEC R1 PECR2 RQ from PEC1 RQ from PEC2 RQ from
PECR1
RQ from PECR2
Sulfasalazine 10.000 0.098 0.098 0.048 13404.83 131.22 131.22 64.30
Amoxicillin 5.000 9.447 9.447 4.629 1351.35 2553.23 2553.23 1251.08
Rifampicin 3.000 0.314 0.314 0.154 460.12 48.20 48.20 23.62
Ranitidine hydrochloride 1.500 0.798 0.798 0.391 214.29 114.01 114.01 55.87
Azithromycin 1.500 0.262 0.262 0.128 78.95 13.78 13.78 6.75
Rifamycin SV 3.000 0.258 0.258 0.126 50.85 4.37 4.37 2.14
Niclosamide 10.000 0.610 0.610 0.299 50.00 3.05 3.05 1.50
Sulfamethoxazole 10.000 0.814 0.814 0.399 47.62 3.87 3.87 1.90
Streptomycin 5.000 0.522 0.522 0.256 46.73 4.88 4.88 2.39
Trimethoprim 2.000 0.999 0.999 0.490 36.50 18.23 18.23 8.93
Oxytetracycline 5.000 17.066 17.066 8.362 27.78 94.81 94.81 46.46
Indometacin 0.500 0.325 0.325 0.159 26.90 17.49 17.49 8.57
Erythromycin 5.000 0.295 0.295 0.144 22.73 1.34 1.34 0.66
Piperacillin 70.000 0.125 0.125 0.061 20.00 0.04 0.04 0.02
Benorilate 15.000 0.678 0.678 0.332 18.54 0.84 0.84 0.41
Phenacetin 9.000 1.700 1.700 0.833 18.52 3.50 3.50 1.71
Chloramphenicol 15.000 0.776 0.776 0.380 13.15 0.68 0.68 0.33
Ciprofloxacin 2.500 0.511 0.511 0.250 12.32 2.52 2.52 1.23
Chloroquine 2.500 0.188 0.188 0.092 9.77 0.73 0.73 0.36
Gliclazide 0.300 0.055 0.055 0.027 8.33 1.54 1.54 0.75
Naproxen 2.500 0.277 0.277 0.136 7.58 0.84 0.84 0.41
Lovastatin 0.225 0.196 0.196 0.096 6.18 5.39 5.39 2.64
Sulfaguanidine 20.000 1.803 1.803 0.883 5.92 0.53 0.53 0.26
Sulfamethazine 20.000 0.586 0.586 0.287 4.71 0.14 0.14 0.07
Clindamycin 6.000 0.150 0.150 0.074 4.56 0.11 0.11 0.06
Norfloxacin 4.000 0.619 0.619 0.303 4.38 0.68 0.68 0.33
Piracetam 12.000 1.859 1.859 0.911 4.34 0.67 0.67 0.33
Amantadine 1.000 0.751 0.751 0.368 3.91 2.93 2.93 1.44
Ofloxacin 2.000 0.408 0.408 0.200 3.77 0.77 0.77 0.38
Isoniazid 1.500 0.123 0.123 0.060 3.70 0.30 0.30 0.15
Ibuprofen 6.000 1.058 1.058 0.518 3.64 0.64 0.64 0.31
Aminophenazone 2.500 2.065 2.065 1.012 2.01 1.66 1.66 0.81
Thiamphenicol 7.500 0.055 0.055 0.027 1.85 0.01 0.01 0.01
Doxycycline 0.500 0.735 0.735 0.360 1.58 2.32 2.32 1.14
Cefotaxime sodium 20.000 0.559 0.559 0.274 1.54 0.04 0.04 0.02
Carbamazepine 5.000 0.082 0.082 0.040 1.33 0.02 0.02 0.01
Mefenamic acid 5.000 0.229 0.229 0.112 0.93 0.04 0.04 0.02
Levamisole 0.750 0.589 0.589 0.289 0.75 0.59 0.59 0.29
Phenobarbital 0.500 0.151 0.151 0.074 0.58 0.18 0.18 0.09
Clotrimazole 0.500 0.137 0.137 0.067 0.50 0.14 0.14 0.07
Cephalexin 10.000 1.655 1.655 0.811 0.47 0.08 0.08 0.04
Ketoprofen 0.750 0.051 0.051 0.025 0.33 0.02 0.02 0.01
Clarithromycin 2.500 0.078 0.078 0.038 0.31 0.01 0.01 0.00
Cefoperazone 20.000 0.386 0.386 0.189 0.30 0.01 0.01 0.00
Sulfadiazine 3.000 0.299 0.299 0.147 0.22 0.02 0.02 0.01
Roxithromycin 1.500 0.328 0.328 0.161 0.21 0.05 0.05 0.02
Methyldopa 5.000 0.028 0.028 0.014 0.13 0.00 0.00 0.00
Tetracycline 5.000 1.466 1.466 0.719 0.11 0.03 0.03 0.02
Antipyrine,phenazone 15.000 0.111 0.111 0.055 0.11 0.00 0.00 0.00
Diclofenac 0.500 0.290 0.290 0.142 0.09 0.05 0.05 0.03
Kanamycin 5.000 0.765 0.765 0.375 0.09 0.01 0.01 0.01
Meprobamate 6.000 0.119 0.119 0.058 0.08 0.00 0.00 0.00
Chlorotetracycline 5.000 0.090 0.090 0.044 0.06 0.00 0.00 0.00
Caffeine 2.000 1.749 1.749 0.857 0.06 0.05 0.05 0.03
Metronidazole 10.000 1.189 1.189 0.583 0.05 0.01 0.01 0.00
Chlorzoxazone 7.500 0.170 0.170 0.083 0.04 0.00 0.00 0.00
Hydrochlorothiazide 0.125 0.061 0.061 0.030 0.03 0.02 0.02 0.01
Pipemidic acid 4.000 0.123 0.123 0.060 0.03 0.00 0.00 0.00
Lincomycin 9.000 2.227 2.227 1.091 0.02 0.01 0.01 0.00
Moroxydine 1.500 1.041 1.041 0.510 0.02 0.01 0.01 0.01
Cefazolin sodium salt 15.000 0.767 0.767 0.376 0.02 0.00 0.00 0.00
Cimetidine 4.000 0.104 0.104 0.051 0.01 0.00 0.00 0.00
Sulfadimethoxine 2.500 0.008 0.008 0.004 0.01 0.00 0.00 0.00
Ampicillin 10.000 0.860 0.860 0.421 0.01 0.00 0.00 0.00
Cefuroxime sodium 2.500 0.160 0.160 0.079 0.01 0.00 0.00 0.00
Amikacin 5.000 0.502 0.502 0.246 0.00 0.00 0.00 0.00
Ribavirin 5.000 0.284 0.284 0.139 0.00 0.00 0.00 0.00
Fosfomycin sodium 15.000 0.542 0.542 0.266 0.00 0.00 0.00 0.00
Aciclovir 20.000 0.153 0.153 0.075 0.00 0.00 0.00 0.00
Griseofulvin 2.500 0.108 0.108 0.053 0.00 0.00 0.00 0.00
Captopril 0.250 0.150 0.150 0.073 0.00 0.00 0.00 0.00
Neomycin 5.000 1.258 1.258 0.616 0.00 0.00 0.00 0.00
Pyrazinamide 7.500 0.116 0.116 0.057 0.00 0.00 0.00 0.00
Ceftazidime 20.000 0.169 0.169 0.083 0.00 0.00 0.00 0.00
Gentamicin 1.200 0.441 0.441 0.216 0.00 0.00 0.00 0.00
Ceftriaxone sodium 10.000 0.021 0.021 0.010 0.00 0.00 0.00 0.00
Sulbactam 5.000 0.175 0.175 0.086 na na na Na
kitasamycin na 0.763 na 0.374 na 152.69 na 74.82
Furazolidone na 0.188 na 0.092 na 3.14 0.00 1.54
Adefovir dipivoxil 0.050 2.527 2.527 1.238 na na na Na
4-Acetamidophenol na 23.165 na 11.351 na 2.52 na 1.23
Metamizole sodium 15.000 5.571 5.571 2.730 na na na Na
Troxerutin na 0.465 na 0.228 na na na Na
Levocarnitine 10.000 0.009 0.009 0.004 na na na Na
Etamsylate na 0.175 na 0.086 na 0.52 na 0.25
Tab.1  Predicted environmental concentration (PEC, μg·L−1) and risk quotient (RQ) for the investigated pharmaceuticals
1 C Carlsson, A K Johansson, G Alvan, K Bergman, T Kühler. Are pharmaceuticals potent environmental pollutants? Part I: environmental risk assessments of selected active pharmaceutical ingredients. The Science of the Total Environment, 2006, 364(1–3): 67–87
https://doi.org/10.1016/j.scitotenv.2005.06.035 pmid: 16257037
2 L H Santos, A N Araújo, A Fachini, A Pena, C Delerue-Matos, M C Montenegro. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials, 2010, 175(1–3): 45–95
https://doi.org/10.1016/j.jhazmat.2009.10.100 pmid: 19954887
3 K Kümmerer. Antibiotics in the aquatic environment—a review—part I. Chemosphere, 2009, 75(4): 417–434
https://doi.org/10.1016/j.chemosphere.2008.11.086 pmid: 19185900
4 J B Ellis. Pharmaceutical and personal care products (PPCPs) in urban receiving waters. Environmental pollution, 2006, 144(1): 184–189
https://doi.org/10.1016/j.envpol.2005.12.018 pmid: 16500738
5 D W Kolpin, E T Furlong, M T Meyer, E M Thurman, S D Zaugg, L B Barber, H T Buxton. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environmental Science and Technology, 2002, 36(6): 1202–1211
https://doi.org/10.1021/es011055j pmid: 11944670
6 D Calamari, E Zuccato, S Castiglioni, R Bagnati, R Fanelli. Strategic survey of therapeutic drugs in the Rivers Po and Lambro in Northern Italy. Environmental Science and Technology, 2003, 37(7): 1241–1248
https://doi.org/10.1021/es020158e
7 S Managaki, A Murata, H Takada, B C Tuyen, N H Chiem. Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong Delta. Environmental Science and Technology, 2007, 41(23): 8004–8010
https://doi.org/10.1021/es0709021 pmid: 18186329
8 C P Yu, K H Chu. Occurrence of pharmaceuticals and personal care products along the West Prong Little Pigeon River in east Tennessee, USA. Chemosphere, 2009, 75(10): 1281–1286
https://doi.org/10.1016/j.chemosphere.2009.03.043 pmid: 19395062
9 Y Yoon, J Ryu, J Oh, B G Choi, S A Snyder. Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, Korea). The Science of the Total Environment, 2010, 408(3): 636–643
https://doi.org/10.1016/j.scitotenv.2009.10.049 pmid: 19900699
10 D Calderón-Preciado, C Jiménez-Cartagena, V Matamoros, J M Bayona. Screening of 47 organic microcontaminants in agricultural irrigation waters and their soil loading. Water Research, 2011, 45(1): 221–231
https://doi.org/10.1016/j.watres.2010.07.050 pmid: 20961595
11 A Pruden, R Pei, H Storteboom, K H Carlson. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environmental Science and Technology, 2006, 40(23): 7445–7450
https://doi.org/10.1021/es060413l pmid: 17181002
12 F Baquero, J L Martínez, R Cantón. Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 2008, 19(3): 260–265
https://doi.org/10.1016/j.copbio.2008.05.006 pmid: 18534838
13 EMEA. Discussion paper on environmental risk assessment of non-genetically modified organism (non-GMO) containing medicinal products for human use. CPMP/SWP/4447/00 draft corr. The European Agency for the Evaluation of Medicinal Products, 2001
14 EMEA. Guideline on the environmental risk assessment of medicinal products for human use. CHMP/SWP/4470/00 draft. The European Agency for Evaluation of Medidicinal Products- Pre-Authorisation Evaluation of Medicines for Human Use (Committee for medicinal Products for Human Use), 2005
15 M Grung, T Källqvist, S Sakshaug, S Skurtveit, K V Thomas. Environmental assessment of Norwegian priority pharmaceuticals based on the EMEA guideline. Ecotoxicology and Environmental Safety, 2008, 71(2): 328–340
https://doi.org/10.1016/j.ecoenv.2007.10.015 pmid: 18068226
16 O A H Jones, N Voulvoulis, J N Lester. Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Research, 2002, 36(20): 5013–5022
https://doi.org/10.1016/S0043-1354(02)00227-0 pmid: 12448549
17 F Stuer-Lauridsen, M Birkved, L P Hansen, H C Holten Lützhøft, B Halling-Sørensen. Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use. Chemosphere, 2000, 40(7): 783–793
https://doi.org/10.1016/S0045-6535(99)00453-1 pmid: 10705557
18 S Park, K Choi. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology (London, England), 2008, 17(6): 526–538
https://doi.org/10.1007/s10646-008-0209-x pmid: 18449638
19 W H Xu, G Zhang, S C Zou, X D Li, Y C Liu. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environmental Pollution, 2007, 145(3): 672–679
https://doi.org/10.1016/j.envpol.2006.05.038 pmid: 16996177
20 X Peng, K Zhang, C Tang, Q Huang, Y Yu, J Cui. Distribution pattern, behavior, and fate of antibacterials in urban aquatic environments in South China. Journal of Environmental Monitoring, 2011, 13(2): 446–454
https://doi.org/10.1039/c0em00394h pmid: 21161084
21 J L Zhao, G G Ying, L Wang, J F Yang, X B Yang, L H Yang, X Li. Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography-negative chemical ionization-mass spectrometry. The Science of the Total Environment, 2009, 407(2): 962–974
https://doi.org/10.1016/j.scitotenv.2008.09.048 pmid: 19004474
22 J L Cao, J H Shi, R Han, Y Li, Z F Yang. Seasonal variations in the occurrence and distribution of estrogens and pharmaceuticals in the Zhangweinanyun River System. Chinese Science Bulletin, 2010, 55(27–28): 3138–3144
https://doi.org/10.1007/s11434-010-3158-8
23 Q Huang, Y Yu, C Tang, K Zhang, J Cui, X Peng. Occurrence and behavior of non-steroidal anti-inflammatory drugs and lipid regulators in wastewater and urban river water of the Pearl River Delta, South China. Journal of Environmental Monitoring, 2011, 13(4): 855–863
https://doi.org/10.1039/c1em10015g pmid: 21412553
24 J F Yang, G G Ying, J L Zhao, R Tao, H C Su, Y S Liu. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 2011, 46(3): 272–280
https://doi.org/10.1080/03601234.2011.540540 pmid: 21462055
25 Y Luo, L Xu, M Rysz, Y Wang, H Zhang, P J Alvarez. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environmental Science and Technology, 2011, 45(5): 1827–1833
https://doi.org/10.1021/es104009s pmid: 21309601
26 R Wei, F Ge, S Huang, M Chen, R Wang. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere, 2011, 82(10): 1408–1414
https://doi.org/10.1016/j.chemosphere.2010.11.067 pmid: 21159362
27 B Halling-Sørensen. Algal toxicity of antibacterial agents used in intensive farming. Chemosphere, 2000, 40(7): 731–739
https://doi.org/10.1016/S0045-6535(99)00445-2 pmid: 10705551
28 R A Brain, D J Johnson, S M Richards, H Sanderson, P K Sibley, K R Solomon. Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test. Environmental Toxicology and Chemistry, 2004, 23(2): 371–382
https://doi.org/10.1897/02-576 pmid: 14982384
29 K Eguchi, H Nagase, M Ozawa, Y S Endoh, K Goto, K Hirata, K Miyamoto, H Yoshimura. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere, 2004, 57(11): 1733–1738
https://doi.org/10.1016/j.chemosphere.2004.07.017 pmid: 15519420
30 M Isidori, M Lavorgna, A Nardelli, L Pascarella, A Parrella. Toxic and genotoxic evaluation of six antibiotics on non-target organisms. The Science of the Total Environment, 2005, 346(1-3): 87–98
https://doi.org/10.1016/j.scitotenv.2004.11.017 pmid: 15993685
31 Y Kim, K Choi, J Jung, S Park, P G Kim, J Park. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environment International, 2007, 33(3): 370–375
https://doi.org/10.1016/j.envint.2006.11.017 pmid: 17223195
32 WHO Collaborating Centre, WHO Collaborating Centre for Drug Statistics Methodology, Oslo.
33 China Medicine Economic Information Net (CMEIN). Chinese Medical Statistical Yearbook (2006–2007). Beijing: China Medicine Economic Information Net, 2007
34 MistraPharma Wiki Database
35 Veterinary Substances DataBase (VSDB)
36 E C O T O X Database.
37 J Fick, R H Lindberg, M Tysklind, D G Larsson. Predicted critical environmental concentrations for 500 pharmaceuticals. Regulatory Toxicology and Pharmacology, 2010, 58(3): 516–523
https://doi.org/10.1016/j.yrtph.2010.08.025 pmid: 20816909
38 Estimation Programs Interface (EPI) SuiteTM was developed by the US Environmental Protection Agency’s Office of Pollution Prevention
39 F Pomati, A G Netting, D Calamari, B A Neilan. Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquatic Toxicology (Amsterdam, Netherlands), 2004, 67(4): 387–396
https://doi.org/10.1016/j.aquatox.2004.02.001 pmid: 15084414
40 H J De Lange, W Noordoven, A J Murk, M Lürling, E T Peeters. Behavioural responses of Gammarus pulex (Crustacea, Amphipoda) to low concentrations of pharmaceuticals. Aquatic Toxicology (Amsterdam, Netherlands), 2006, 78(3): 209–216
https://doi.org/10.1016/j.aquatox.2006.03.002 pmid: 16624423
41 R Triebskorn, H Casper, V Scheil, J Schwaiger. Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Analytical and Bioanalytical Chemistry, 2007, 387(4): 1405–1416
https://doi.org/10.1007/s00216-006-1033-x pmid: 17216161
42 K Kümmerer. The presence of pharmaceuticals in the environment due to human use—present knowledge and future challenges. Journal of Environmental Management, 2009, 90(8): 2354–2366
https://doi.org/10.1016/j.jenvman.2009.01.023 pmid: 19261375
43 H Zhou, C Wu, X Huang, M Gao, X Wen, H Tsuno, H Tanaka. Occurrence of selected pharmaceuticals and caffeine in sewage treatment plants and receiving rivers in Beijing, China. Water Environment Research, 2010, 82(11): 2239–2248
https://doi.org/10.2175/106143010X12681059116653 pmid: 21141385
44 W Xu, G Zhang, S Zou, Z Ling, G Wang, W Yan. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China. Water Environment Research, 2009, 81(3): 248–254
https://doi.org/10.2175/106143008X325719 pmid: 19378655
45 X Chang, M T Meyer, X Liu, Q Zhao, H Chen, J A Chen, Z Qiu, L Yang, J Cao, W Shu. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China. Environmental Pollution, 2010, 158(5): 1444–1450
https://doi.org/10.1016/j.envpol.2009.12.034 pmid: 20096493
46 L Wang, G G Ying, J L Zhao, X B Yang, F Chen, R Tao, S Liu, L J Zhou. Occurrence and risk assessment of acidic pharmaceuticals in the Yellow River, Hai River and Liao River of north China. The Science of the Total Environment, 2010, 408(16): 3139–3147
https://doi.org/10.1016/j.scitotenv.2010.04.047 pmid: 20493517
47 J L Zhao, G G Ying, Y S Liu, F Chen, J F Yang, L Wang, X B Yang, J L Stauber, M S Warne. Occurrence and a screening-level risk assessment of human pharmaceuticals in the Pearl River system, South China. Environmental Toxicology and Chemistry, 2010, 29(6): 1377–1384
pmid: 20821582
48 D Zhang, L Lin, Z Luo, C Yan, X Zhang. Occurrence of selected antibiotics in Jiulongjiang River in various seasons, South China. Journal of Environmental Monitoring, 2011, 13(7): 1953–1960
https://doi.org/10.1039/c0em00765j pmid: 21594300
49 L Jiang, X Hu, D Yin, H Zhang, Z Yu. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. Chemosphere, 2011, 82(6): 822–828
https://doi.org/10.1016/j.chemosphere.2010.11.028 pmid: 21131021
50 Y Yang, J Fu, H Peng, L Hou, M Liu, J L Zhou. Occurrence and phase distribution of selected pharmaceuticals in the Yangtze Estuary and its coastal zone. Journal of Hazardous Materials, 2011, 190(1–3): 588–596
https://doi.org/10.1016/j.jhazmat.2011.03.092 pmid: 21497014
51 S Zou, W Xu, R Zhang, J Tang, Y Chen, G Zhang. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: impacts of river discharge and aquaculture activities. Environmental Pollution, 2011, 159(10): 2913–2920
https://doi.org/10.1016/j.envpol.2011.04.037 pmid: 21576000
52 X Peng, Y Yu, C Tang, J Tan, Q Huang, Z Wang. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. The Science of the Total Environment, 2008, 397(1-3): 158–166
https://doi.org/10.1016/j.scitotenv.2008.02.059 pmid: 18407320
53 Q Sui, J Huang, S Deng, W Chen, G Yu. Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in different biological wastewater treatment processes. Environmental Science and Technology, 2011, 45(8): 3341–3348
https://doi.org/10.1021/es200248d pmid: 21428396
[1] Haojun Lei, Kaisheng Yao, Bin Yang, Lingtian Xie, Guangguo Ying. Occurrence, spatial and seasonal variation, and environmental risk of pharmaceutically active compounds in the Pearl River basin, South China[J]. Front. Environ. Sci. Eng., 2023, 17(4): 46-.
[2] Yaoqian Zhong, Bingxin Xia, Jianwu Shi, Ping Ning, Chaoneng Zhang, Xinyu Han, Jiming Hao. Particle-bound polycyclic aromatic hydrocarbons in typical urban of Yunnan-Guizhou Plateau: Characterization, sources and risk assessment[J]. Front. Environ. Sci. Eng., 2022, 16(9): 114-.
[3] Wenwen Gong, Yu Xing, Lihua Han, Anxiang Lu, Han Qu, Li Xu. Occurrence and distribution of micro- and mesoplastics in the high-latitude nature reserve, northern China[J]. Front. Environ. Sci. Eng., 2022, 16(9): 113-.
[4] Liang Cui, Ji Li, Xiangyun Gao, Biao Tian, Jiawen Zhang, Xiaonan Wang, Zhengtao Liu. Human health ambient water quality criteria for 13 heavy metals and health risk assessment in Taihu Lake[J]. Front. Environ. Sci. Eng., 2022, 16(4): 41-.
[5] Hua Long, Yang Liao, Changhao Cui, Meijia Liu, Zeiwei Liu, Li Li, Wenzheng Hu, Dahai Yan. Assessment of popular techniques for co-processing municipal solid waste in Chinese cement kilns[J]. Front. Environ. Sci. Eng., 2022, 16(4): 51-.
[6] Yanfeng Yang, Ruina Zhang, Ziyang Lou. Bioaerosol emissions variations in large-scale landfill region and their health risk impacts[J]. Front. Environ. Sci. Eng., 2022, 16(12): 158-.
[7] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[8] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[9] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[10] Feng Zhu, Zhijian Yao, Wenliang Ji, Deye Liu, Hao Zhang, Aimin Li, Zongli Huo, Qing Zhou. An efficient resin for solid-phase extraction and determination by UPLCMS/MS of 44 pharmaceutical personal care products in environmental waters[J]. Front. Environ. Sci. Eng., 2020, 14(3): 51-.
[11] Xueqi Fan, Jie Gao, Wenchao Li, Jun Huang, Gang Yu. Determination of 27 pharmaceuticals and personal care products (PPCPs) in water: The benefit of isotope dilution[J]. Front. Environ. Sci. Eng., 2020, 14(1): 8-.
[12] Lei Zheng, Xingbao Gao, Wei Wang, Zifu Li, Lingling Zhang, Shikun Cheng. Utilization of MSWI fly ash as partial cement or sand substitute with focus on cementing efficiency and health risk assessment[J]. Front. Environ. Sci. Eng., 2020, 14(1): 5-.
[13] Bao Yu, Guodi Zheng, Xuedong Wang, Min Wang, Tongbin Chen. Biodegradation of triclosan and triclocarban in sewage sludge during composting under three ventilation strategies[J]. Front. Environ. Sci. Eng., 2019, 13(3): 41-.
[14] Xinshu Jiang, Yingxi Qu, Liquan Liu, Yuan He, Wenchao Li, Jun Huang, Hongwei Yang, Gang Yu. PPCPs in a drinking water treatment plant in the Yangtze River Delta of China: Occurrence, removal and risk assessment[J]. Front. Environ. Sci. Eng., 2019, 13(2): 27-.
[15] Huang Huang, Jie Wu, Jian Ye, Tingjin Ye, Jia Deng, Yongmei Liang, Wei Liu. Occurrence, removal, and environmental risks of pharmaceuticals in wastewater treatment plants in south China[J]. Front. Environ. Sci. Eng., 2018, 12(6): 7-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed