Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (4) : 471-482    https://doi.org/10.1007/s11783-014-0654-0
REVIEW ARTICLE
Applications of nanomaterials in water treatment and environmental remediation
Gholamreza GHASEMZADEH1,*(),Mahdiye MOMENPOUR2,Fakhriye OMIDI3,Mohammad R. HOSSEINI4,Monireh AHANI5,Abolfazl BARZEGARI6,*()
1. Department of Agriculture, Payame Noor University, Tehran 19569, Iran
2. Department of Environmental Biodiversity, Lahijan Branch, Islamic Azad University, Lahijan 4491874551, Iran
3. Department of Fisheries, Agricultural Science & Natural Resources University, Gorgan 1439955471, Iran
4. Department of Environmental Science, University of Pune, Pune 411007, India
5. Department of Agriculture, Takestan Branch, Islamic Azad University, Takestan 18610307, Iran
6. Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
 Download: PDF(534 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nanotechnology has revolutionized plethora of scientific and technological fields; environmental safety is no exception. One of the most promising and well-developed environmental applications of nanotechnology has been in water remediation and treatment where different nanomaterials can help purify water through different mechanisms including adsorption of heavy metals and other pollutants, removal and inactivation of pathogens and transformation of toxic materials into less toxic compounds. For this purpose, nanomaterials have been produced in different shapes, integrated into various composites and functionalized with active components. Nanomaterials have also been incorporated in nanostructured catalytic membranes which can in turn help enhance water treatment. In this article, we have provided a succinct review of the most common and popular nanomaterials (titania, carbon nanotubes (CNTs), zero-valent iron, dendrimers and silver nanomaterials) which are currently used in environmental remediation and particularly in water purification. The catalytic properties and functionalities of the mentioned materials have also been discussed.

Keywords photocatalysis      titania      silver      carbon nanotube      zero-valent iron      dendrimer     
Corresponding Author(s): Gholamreza GHASEMZADEH   
Issue Date: 11 June 2014
 Cite this article:   
Gholamreza GHASEMZADEH,Mahdiye MOMENPOUR,Fakhriye OMIDI, et al. Applications of nanomaterials in water treatment and environmental remediation[J]. Front.Environ.Sci.Eng., 2014, 8(4): 471-482.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0654-0
https://academic.hep.com.cn/fese/EN/Y2014/V8/I4/471
Fig.1  Bismuth oxyiodine/TiO2 hybrid NPs synthesized through a reverse microemulsion method, photocatalytically detoxify organic pollutants to CO2 and H2O under visible light irradiation. The photoactivity of the nanocomposite is highly dependent on the mole ratio of BiOI/TiO2. The synergistic photocatalytic activity is attributed to the effective electron-hole separations at the interfaces of the two NPs, which facilitate the transfer of the photo-induced carriers. (Reprinted from Applied Surface Science, Vol 258, Zhang Liu, Xiaoxin Xu, Jianzhang Fang, Ximiao Zhu, Jinhui Chu, Baojian Li, Microemulsion synthesis, characterization of bismuth oxyiodine/titanium dioxide hybrid nanoparticles with outstanding photocatalytic performance under visible light irradiation, Pages 3771–3778, Copyright (2012), with permission from Elsevier)
Fig.2  The TiO2-SiO2 nanocomposite was formed inside the porous structure of carbonate stone by simple spraying of a sol containing silica oligomers and TiO2 NPs. These NPs can transform organic pollutants to CO2 and H2O under UV light and lend self-cleaning capability to the stone. (Reprinted from Applied Surface Science, Vol 275, Luís Pinho, Farid Elhaddad, Dario S. Facio, Maria J. Mosquera, A novel TiO2-SiO2 nanocomposite converts a very friable stone into a self-cleaning building material, Pages 389–396, Copyright (2012), with permission from Elsevier)
Fig.3  Graphene oxide nanosheet was stably functionalized with smart RNA aptamers through covalent bonds. The produced device canspecifically recognize and adsorb microcystin-LR, a trace peptide toxin in drinking water. (Reprinted from Journal of Hazardous Materials, Vol 213-214, Xiangang Hu, Li Mu, Jianping Wen, Qixing Zhou, Immobilized smart RNA on graphene oxide nanosheets to specifically recognize and adsorb trace peptide toxins in drinking water, Pages 387–392, Copyright (2012), with permission from Elsevier)
nanomaterial compositiontarget compound(s)mechanism of actionproperties
bimetallic Pd/Mgpolychlorinated biphenylselectrochemical reductionappropriate oxidationpotential of Mg coupled with low cost, high effectiveness and environmentalfriendliness
akaganeite-type nanocrystalsAs(V), Cd ions and Cr(VI)sorptioninorganic adsorbent material
nano/microscale FeO and Fe3O42,4-dichlorophenoxyacetic acid (2,4-D)reductive transformationsmaller negative impact on the ecological environment compared to Fe0 NPs
granular activated carbon/Fe/Pd bimetallicspolychlorinated biphenylsadsorption-mediated dechlorination and electrochemical catalysisadsorption-mediated dechlorination is a unique feature of this material
Bi0.5Na0.5TiO3 (BNT) micro/nanostructureorganic pollutantsphotodegradationhigh activity, high degradation efficiency for organic pollutants
cuprous ferrite (CuFeO2)heavy metal ionsphotocatalytic reductionp-type semiconductor characterized by a low optical gap- matched to the sun spectrum- long-term chemical stability in neutral solution
CuCrO2heavy metal ions such as Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Ag+photocatalytic reductionp-type semiconductor characterized by a low band gap- long-term chemical stability
Co3O4chlorinated compoundsdecomposition by dechlorinationamong the best dechlorination materials
nano-CeO2-modified CNTs (CeO2-CNTs)As(V)Adsorptioneffective pH-dependent adsorbent for arsenate
ZnO NPschlorinated phenolsphotocatalytic degradationlittle photocorrosion of ZnO- ZnO can be reused
Tab.1  Other nanomaterials used for removal or transformation of water pollutants and the associated mechanism of action
membrane structureclassproperties gained by addition of nano-component
nano TiO2polymeric membranesimprovements in thermal stability, mechanical strength and mass transfer acceleration in exposure time, smoother surfaces
nano-alumina (Al2O3)Polymeric membranessignificant differences in surface and intrinsic properties
silica NPspolymeric membranessuperior thermal stabilityhigher separation efficiency and productivity fluxrelatively large pore sizes as well as higher pore number density
zeolitepolymeric membranes
CNTpolymeric membranesdiffusivity
TiO2ceramic membraneschemical resistance and high water permeability photocatalysis
silver NPsceramic membranesmitigation of biofouling
iron oxideceramic membranesfunctioning in sorbent catalysismore resistance to acids, corrosive media and oxidants than alumina-based NPsimprovement in water quality by significantly reducing the concentration of disinfection by-product precursorsreduction in ozonation by-products such as aldehydes, ketones and ketoacids
Al2O3 (Alumoxane)ceramic membraneshigh water permeability, narrow size distribution and good porosity- increase in selectivity and increased fluxretention coefficients and flux values could be altered by chemical functionalization
ferric oxide materialsceramic membranesresistant to acid, corrosive media and oxidantadvantage of no involvement of hazardous chemicals during the fabrication procedure
CNTceramic membranesunique structure, sorbent, electric and thermal conductivity
Tab.2  Nanomaterial-enhanced membranes used in water remediationa)
1 ShanG, SurampalliR Y, TyagiR D, ZhangT C. Nanomaterials for environmental burden reduction, waste treatment, and nonpoint source pollution control: a review. Frontiers of Environmental Science & Engineering in China, 2009, 3(3): 249–264
doi: 10.1007/s11783-009-0029-0
2 MangunC L, YueZ, EconomyJ, MaloneyS, KemmeP, CropekD. Adsorption of organic contaminants from water using tailored ACFs. Chemistry of Materials, 2001, 13(7): 2356–2360
doi: 10.1021/cm000880g
3 RaiM, YadavA, GadeA. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 2009, 27(1): 76–83
doi: 10.1016/j.biotechadv.2008.09.002 pmid: 18854209
4 LowryG V, JohnsonK M. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environmental Science & Technology, 2004, 38(19): 5208–5216
doi: 10.1021/es049835q pmid: 15506219
5 StoneV, NowackB, BaunA, van den BrinkN, KammerFv, DusinskaM, HandyR, HankinS, HassellövM, JonerE, FernandesT F. Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. The Science of the Total Environment, 2010, 408(7): 1745–1754
doi: 10.1016/j.scitotenv.2009.10.035 pmid: 19903569
6 HuJ S, ZhongL S, SongW G, WanL J. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Advanced Materials, 2008, 20(15): 2977–2982
doi: 10.1002/adma.200800623
7 CaiW, YuJ, ChengB, SuB L, JaroniecM. Synthesis of boehmite hollow core/shell and hollow microspheres via sodium tartrate-mediated phase transformation and their enhanced adsorption performance in water treatment. Journal of Physical Chemistry C, 2009, 113(33): 14739–14746
doi: 10.1021/jp904570z
8 ZhangY X, JiaY, JinZ, YuX Y, XuW H, LuoT, ZhuB J, LiuJ H, HuangX J. Self-assembled, monodispersed, flower-like γ-AlOOH hierarchical superstructures for efficient and fast removal of heavy metal ions from water. CrystEngComm, 2012, 14(9): 3005–3007
doi: 10.1039/c2ce06545b
9 CarpO, HuismanC, RellerA. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 2004, 32(1–2): 33–177
doi: 10.1016/j.progsolidstchem.2004.08.001
10 ParamasivamI, JhaH, LiuN, SchmukiP. A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. Small, 2012, 8(20): 3073–3103
doi: 10.1002/smll.201200564 pmid: 22961930
11 NakataK, FujishimaA. TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2012, 13(3): 169–189
doi: 10.1016/j.jphotochemrev.2012.06.001
12 ZhanqiG, ShaoguiY, NaT, ChengS. Microwave assisted rapid and complete degradation of atrazine using TiO(2) nanotube photocatalyst suspensions. Journal of Hazardous Materials, 2007, 145(3): 424–430
doi: 10.1016/j.jhazmat.2006.11.042 pmid: 17188429
13 YuB, ZengJ, GongL, ZhangM, ZhangL, ChenX. Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film. Talanta, 2007, 72(5): 1667–1674
doi: 10.1016/j.talanta.2007.03.013 pmid: 19071814
14 GeM, GuoC, ZhuX, MaL, HanZ, HuW, WangY.Photocatalytic degradation of methyl orange using ZnO/TiO2 composites. Frontiers of Environmental Science & Engineering in China, 2009, 3(3): 271–280
doi: 10.1007/s11783-009-0035-2
15 MalatoS, Fernández-IbáñezP, MaldonadoM, BlancoJ, GernjakW. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 2009, 147(1): 1–59
doi: 10.1016/j.cattod.2009.06.018
16 LiouJ W, ChangH H. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Archivum Immunologiae et Therapiae Experimentalis, 2012, 60(4): 267–275
doi: 10.1007/s00005-012-0178-x pmid: 22678625
17 BrezováV, GabcováS, DvoranováD, StaškoA. Reactive oxygen species produced upon photoexcitation of sunscreens containing titanium dioxide (an EPR study). Journal of Photochemistry and Photobiology. B, Biology, 2005, 79(2): 121–134
doi: 10.1016/j.jphotobiol.2004.12.006 pmid: 15878117
18 WeiC, LinW Y, ZainalZ, WilliamsN E, ZhuK, KruzicA P, SmithR L, RajeshwarK. Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environmental Science & Technology, 1994, 28(5): 934–938
doi: 10.1021/es00054a027 pmid: 22191837
19 SuwanchawalitC, WongnawaS. Triblock copolymer-templated synthesis of porous TiO2 and its photocatalytic activity. Journal of Nanoparticle Research, 2010, 12(8): 2895–2906
doi: 10.1007/s11051-010-9880-y
20 EngatesK E, ShipleyH J. Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environmental Science and Pollution Research International, 2011, 18(3): 386–395
doi: 10.1007/s11356-010-0382-3 pmid: 20694836
21 LeungP S. Removal and recovery of heavy metals by amorphous TiO2 nanoparticles and Ca-alginate immobilized TiO2 beads. Dissertation for the Master of Philosophy Degree. Department of Applied Biology and Chemical Technology, HongKong: The Hong Kong Polytechnic University, 2009
22 LiangP, QinY, HuB, PengT, JiangZ. Nanometer-size titanium dioxide microcolumn on-line preconcentration of trace metals and their determination by inductively coupled plasma atomic emission spectrometry in water. Analytica Chimica Acta, 2001, 440(2): 207–213
doi: 10.1016/S0003-2670(01)01010-8
23 AsahiR, MorikawaT, OhwakiT, AokiK, TagaY. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269–271
doi: 10.1126/science.1061051 pmid: 11452117
24 WangG, WangX, LiuJ, SunX. Mesoporous Au/TiO2 nanocomposite microspheres for visible-light photocatalysis. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(17): 5361–5366
doi: 10.1002/chem.201101410 pmid: 22415950
25 LiuZ, XuX, FangJ, ZhuX, ChuJ, LiB. Microemulsion synthesis, characterization of bismuth oxyiodine/titanium dioxide hybrid nanoparticles with outstanding photocatalytic performance under visible light irradiation. Applied Surface Science, 2012, 258(8): 3771–3778
doi: 10.1016/j.apsusc.2011.12.025
26 AcevedoA, CarpioE A, RodriguezJ, ManzanoM A. Disinfection of natural water by solar photocatalysis using immobilized TiO2 devices: efficiency in eliminating indicator bacteria and operating life of the system. Journal of Solar Energy Engineering, 2012, 134(1): 011008
doi: 10.1115/1.4005338
27 LearyR, WestwoodA. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon, 2011, 49(3): 741–772
doi: 10.1016/j.carbon.2010.10.010
28 LsP, ElhaddadF, FacioD S.Mosquera MJ. A novel TiO2-SiO2 nanocomposite converts a very friable stone into a self-cleaning building material. Applied Surface Science, 2012, 258(24): 10123–10127
pmid: 23482867
29 SavageN, DialloM S. Nanomaterials and water purification: opportunities and challenges. Journal of Nanoparticle Research, 2005, 7(4–5): 331–342
doi: 10.1007/s11051-005-7523-5
30 KrotoH W, AllafA W, BalmS P. C60 Buckminsterfullerene. Chemical Reviews, 1991, 91(6): 1213–1235
doi: 10.1021/cr00006a005
31 IijimaS. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58
doi: 10.1038/354056a0
32 FaganS B, Souza FilhoA, LimaJ, FilhoJ M, FerreiraO P, MazaliI O, AlvesO L, DresselhausM S. 1,2-dichlorobenzene interacting with carbon nanotubes. Nano Letters, 2004, 4(7): 1285–1288
doi: 10.1021/nl0493895
33 LuC, ChungY L, ChangK F. Adsorption of trihalomethanes from water with carbon nanotubes. Water Research, 2005, 39(6): 1183–1189
doi: 10.1016/j.watres.2004.12.033 pmid: 15766973
34 LongR Q, YangR T. Carbon nanotubes as superior sorbent for dioxin removal. Journal of the American Chemical Society, 2001, 123(9): 2058–2059
doi: 10.1021/ja003830l pmid: 11456830
35 YangK, ZhuL, XingB. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environmental Science & Technology, 2006, 40(6): 1855–1861
doi: 10.1021/es052208w pmid: 16570608
36 WangX, LuJ, XingB. Sorption of organic contaminants by carbon nanotubes: influence of adsorbed organic matter. Environmental Science & Technology, 2008, 42(9): 3207–3212
doi: 10.1021/es702971g pmid: 18522095
37 ZhouQ, XiaoJ, WangW. Using multi-walled carbon nanotubes as solid phase extraction adsorbents to determine dichlorodiphenyltrichloroethane and its metabolites at trace level in water samples by high performance liquid chromatography with UV detection. Journal of Chromatography. A, 2006, 1125(2): 152–158
doi: 10.1016/j.chroma.2006.05.047 pmid: 16797570
38 ShiB, ZhuangX, YanX, LuJ, TangH. Adsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes. Journal of Environmental Sciences-China, 2010, 22(8): 1195–1202
doi: 10.1016/S1001-0742(09)60238-2 pmid: 21179958
39 HildingJ, GrulkeE A, SinnottS B, QianD, AndrewsR, JagtoyenM. Sorption of butane on carbon multiwall nanotubes at room temperature. Langmuir, 2001, 17(24): 7540–7544
doi: 10.1021/la010131t
40 YuF, MaJ, WuY. Adsorption of toluene, ethylbenzene and xylene isomers on multi-walled carbon nanotubes oxidized by different concentration of NaOCl. Frontiers of Environmental Science & Engineering, 2012, 6(3): 320–329
41 FugetsuB, SatohS, ShibaT, MizutaniT, LinY B, TeruiN, NodasakaY, SasaK, ShimizuK, AkasakaT, ShindohM, ShibataK, YokoyamaA, MoriM, TanakaK, SatoY, TohjiK, TanakaS, NishiN, WatariF. Caged multiwalled carbon nanotubes as the adsorbents for affinity-based elimination of ionic dyes. Environmental Science & Technology, 2004, 38(24): 6890–6896
doi: 10.1021/es049554i pmid: 15669354
42 LiY H, DingJ, LuanZ, DiZ, ZhuY, XuC, WuD, WeiB. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 2003, 41(14): 2787–2792
doi: 10.1016/S0008-6223(03)00392-0
43 KandahM I, MeunierJ L. Removal of nickel ions from water by multi-walled carbon nanotubes. Journal of Hazardous Materials, 2007, 146(1–2): 283–288
doi: 10.1016/j.jhazmat.2006.12.019 pmid: 17196328
44 PengX, LuanZ, DingJ, DiZ, LiY, TianB. Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Materials Letters, 2005, 59(4): 399–403
doi: 10.1016/j.matlet.2004.05.090
45 PanB, XingB. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology, 2008, 42(24): 9005–9013
doi: 10.1021/es801777n pmid: 19174865
46 BystrzejewskiM, PyrzynskaK. Kinetics of copper ions sorption onto activated carbon, carbon nanotubes and carbon-encapsulated magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377(1–3): 402–408
doi: 10.1016/j.colsurfa.2011.01.041
47 TianX, ZhouS, ZhangZ, HeX, YuM, LinD. Metal impurities dominate the sorption of a commercially available carbon nanotube for Pb(II) from water. Environmental Science & Technology, 2010, 44(21): 8144–8149
doi: 10.1021/es102156u pmid: 20919734
48 XuD, TanX, ChenC, WangX. Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials, 2008, 154(1–3): 407–416
doi: 10.1016/j.jhazmat.2007.10.059 pmid: 18053642
49 AfzaliD, GhaseminezhadS, TaherM A. Separation and preconcentration of trace amounts of gold(III) ions using modified multiwalled carbon nanotube sorbent prior to flame atomic absorption spectrometry determination. Journal of AOAC International, 2010, 93(4): 1287–1292
pmid: 20922963
50 LuoG, YaoH, XuM, CuiX, ChenW, GuptaR, XuZ. Carbon nanotube-silver composite for mercury capture and analysis. Energy & Fuels, 2010, 24(1): 419–426
doi: 10.1021/ef900777v
51 LuC, LiuC. Removal of nickel (II) from aqueous solution by carbon nanotubes. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2006, 81(12): 1932–1940
doi: 10.1002/jctb.1626
52 ZhangX, PanB, YangK, ZhangD, HouJ. Adsorption of sulfamethoxazole on different types of carbon nanotubes in comparison to other natural adsorbents. Journal of Environmental Science and Health Part A, Toxic/hazardous substances & environmental engineering, 2010, 45(12): 1625–1634
doi: 10.1080/10934529.2010.506127 pmid: 20730655
53 YangK, WuW, JingQ, JiangW, XingB. Competitive adsorption of naphthalene with 2,4-dichlorophenol and 4-chloroaniline on multiwalled carbon nanotubes. Environmental Science & Technology, 2010, 44(8): 3021–3027
doi: 10.1021/es100018a pmid: 20201557
54 YangK, WangX, ZhuL, XingB. Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes. Environmental Science & Technology, 2006, 40(18): 5804–5810
doi: 10.1021/es061081n pmid: 17007144
55 TanX, FangM, ChenC, YuS, WangX. Counterion effects of nickel and sodium dodecylbenzene sulfonate adsorption to multiwalled carbon nanotubes in aqueous solution. Carbon, 2008, 46(13): 1741–1750
doi: 10.1016/j.carbon.2008.07.023
56 KangS, PinaultM, PfefferleL D, ElimelechM. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 2007, 23(17): 8670–8673
doi: 10.1021/la701067r pmid: 17658863
57 TangY J, AshcroftJ M, ChenD, MinG, KimC H, MurkhejeeB, LarabellC, KeaslingJ D, ChenF F. Charge-associated effects of fullerene derivatives on microbial structural integrity and central metabolism. Nano Letters, 2007, 7(3): 754–760
doi: 10.1021/nl063020t pmid: 17288489
58 KangS, MauterM S, ElimelechM. Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environmental Science & Technology, 2009, 43(7): 2648–2653
doi: 10.1021/es8031506 pmid: 19452930
59 SrivastavaA, SrivastavaO N, TalapatraS, VajtaiR, AjayanP M. Carbon nanotube filters. Nature Materials, 2004, 3(9): 610–614
doi: 10.1038/nmat1192 pmid: 15286755
60 Brady-EstévezA S, KangS, ElimelechM. A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small, 2008, 4(4): 481–484
doi: 10.1002/smll.200700863 pmid: 18383192
61 JiaG, WangH, YanL, WangX, PeiR, YanT, ZhaoY, GuoX. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environmental Science & Technology, 2005, 39(5): 1378–1383
doi: 10.1021/es048729l pmid: 15787380
62 ZhangW. Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 2003, 5(3/4): 323–332
doi: 10.1023/A:1025520116015
63 ZhangW, ElliottD W. Applications of iron nanoparticles for groundwater remediation. Remediation Journal, 2006, 16(2): 7–21
doi: 10.1002/rem.20078
64 DrorI, BaramD, BerkowitzB. Use of nanosized catalysts for transformation of chloro-organic pollutants. Environmental Science & Technology, 2005, 39(5): 1283–1290
doi: 10.1021/es0490222 pmid: 15787368
65 KeumY S, LiQ X. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environmental Science & Technology, 2005, 39(7): 2280–2286
doi: 10.1021/es048846g pmid: 15871265
66 KimH Y, KimI K, ShimJ H, KimY C, HanT H, ChungK C, KimP I, OhB T, KimI S. Removal of alachlor and pretilachlor by laboratory-synthesized zerovalent iron in pesticide formulation solution. Bulletin of Environmental Contamination and Toxicology, 2006, 77(6): 826–833
doi: 10.1007/s00128-006-1218-1 pmid: 17219301
67 MeyerD, WoodK, BachasL, BhattacharyyaD. Degradation of chlorinated organics by membrane‐immobilized nanosized metals. Environment and Progress, 2004, 23(3): 232–242
doi: 10.1002/ep.10031
68 ChengI F, FernandoQ, KorteN. Electrochemical dechlorination of 4-chlorophenol to phenol. Environmental Science & Technology, 1997, 31(4): 1074–1078
doi: 10.1021/es960602b
69 KimJ H, TratnyekP G, ChangY S. Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. Environmental Science & Technology, 2008, 42(11): 4106–4112
doi: 10.1021/es702560k pmid: 18589973
70 BoyerC, WhittakerM R, BulmusV, LiuJ, DavisT P. The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Materials, 2010, 2(1): 23–30
doi: 10.1038/asiamat.2010.6
71 TiraferriA, ChenK L, SethiR, ElimelechM. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science, 2008, 324(1–2): 71–
doi: 10.1016/j.jcis.2008.04.064 pmid: 18508073
72 ChengM D. Effects of nanophase materials (≤20 nm) on biological responses.Journal of Environmental Science and Health. Part A, 2004, 39(10): 2691–2705
73 KreylingW G, Semmler-BehnkeM, MöllerW. Health implications of nanoparticles. Journal of Nanoparticle Research, 2006, 8(5): 543–562
doi: 10.1007/s11051-005-9068-z
74 MedinaS H, El-SayedM E. Dendrimers as carriers for delivery of chemotherapeutic agents. Chemical Reviews, 2009, 109(7): 3141–3157
doi: 10.1021/cr900174j pmid: 19534493
75 TomaliaD A, NaylorA M, GoddardW A. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angewandte Chemie International Edition in English, 1990, 29(2): 138–175
doi: 10.1002/anie.199001381
76 DialloM S, ChristieS, SwaminathanP, BaloghL, ShiX, UmW, PapelisC, GoddardW A 3rd, JohnsonJ H Jr. Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir, 2004, 20(7): 2640–2651
doi: 10.1021/la036108k pmid: 15835132
77 SunC, QuR, JiC, WangC, SunY, YueZ, ChengG. Preparation and adsorption properties of crosslinked polystyrene-supported low-generation diethanolamine-typed dendrimer for metal ions. Talanta, 2006, 70(1): 14–19
doi: 10.1016/j.talanta.2006.01.011 pmid: 18970721
78 ShahbaziA, YounesiH, BadieiA. Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column. Chemical Engineering Journal, 2011, 168(2): 505–518
doi: 10.1016/j.cej.2010.11.053
79 SonW K, YoukJ H, LeeT S, ParkW H. Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromolecular Rapid Communications, 2004, 25(18): 1632–1637
doi: 10.1002/marc.200400323
80 Marambio-JonesC, HoekE M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 2010, 12(5): 1531–1551
doi: 10.1007/s11051-010-9900-y
81 StoimenovP K, KlingerR L, MarchinG L, KlabundeK J. Metal oxide nanoparticles as bactericidal agents. Langmuir, 2002, 18(17): 6679–6686
doi: 10.1021/la0202374
82 MartinsonC A, ReddyK J. Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. Journal of Colloid and Interface Science, 2009, 336(2): 406–411
doi: 10.1016/j.jcis.2009.04.075 pmid: 19477461
83 ZhuD, PignatelloJ J. Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environmental Science & Technology, 2005, 39(7): 2033–2041
doi: 10.1021/es0491376 pmid: 15871234
84 IonA C, AlpatovaA, IonI, CuletuA. Study on phenol adsorption from aqueous solutions on exfoliated graphitic nanoplatelets. Materials Science and Engineering B, 2011, 176(7): 588–595
doi: 10.1016/j.mseb.2011.01.018
85 QiL, XuZ. Lead sorption from aqueous solutions on chitosan nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 251(1–3): 183–190
doi: 10.1016/j.colsurfa.2004.10.010
86 HuX, MuL, WenJ, ZhouQ. Immobilized smart RNA on graphene oxide nanosheets to specifically recognize and adsorb trace peptide toxins in drinking water. Journal of Hazardous Materials, 2012, 213–214 (213–214): 387–392
doi: 10.1016/j.jhazmat.2012.02.012 pmid: 22366314
87 YuanG. Natural and modified nanomaterials as sorbents of environmental contaminants. Journal of Environmental Science and Health. Part A, 2004, 39(10): 2661–2670
88 MuellerN C, van der BruggenB, KeuterV, LuisP, MelinT, PronkW, ReisewitzR, RickerbyD, RiosG M, WennekesW, NowackB. Nanofiltration and nanostructured membranes—should they be considered nanotechnology or not? Journal of Hazardous Materials, 2012, 211–212: 275–280
doi: 10.1016/j.jhazmat.2011.10.096 pmid: 22154870
89 LiJ H, XuY Y, ZhuL P, WangJ H, DuC H. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. Journal of Membrane Science, 2009, 326(2): 659–666
doi: 10.1016/j.memsci.2008.10.049
90 CortalezziM M, RoseJ, WellsG F, BotteroJ Y, BarronA R, WiesnerM R. Ceramic membranes derived from ferroxane nanoparticles: a new route for the fabrication of iron oxide ultrafiltration membranes. Journal of Membrane Science, 2003, 227(1–2): 207–217
doi: 10.1016/j.memsci.2003.08.027
91 KimS H, KwakS Y, SohnB H, ParkT H. Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. Journal of Membrane Science, 2003, 211(1): 157–165
doi: 10.1016/S0376-7388(02)00418-0
92 DeFriendK A, WiesnerM R, BarronA R. Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles. Journal of Membrane Science, 2003, 224(1–2): 11–28
doi: 10.1016/S0376-7388(03)00344-2
93 KimJ, DaviesS H R, BaumannM J, TarabaraV V, MastenS J. Effect of ozone dosage and hydrodynamic conditions on the permeate flux in a hybrid ozonation ceramic ultrafiltration system treating natural waters. Journal of Membrane Science, 2008, 311(1–2): 165–172
doi: 10.1016/j.memsci.2007.12.010
94 ChaeS R, WangS, HendrenZ D, WiesnerM R, WatanabeY, GunschC K. Effects of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control. Journal of Membrane Science, 2009, 329(1–2): 68–74
doi: 10.1016/j.memsci.2008.12.023
95 VerweijH, SchilloM C, LiJ. Fast mass transport through carbon nanotube membranes. Small, 2007, 3(12): 1996–2004
doi: 10.1002/smll.200700368 pmid: 18022891
96 KimJ, Van der BruggenB. The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environmental Pollution (Barking, Essex: 1987), 2010, 158(7): 2335–2349
doi: 10.1016/j.envpol.2010.03.024 pmid: 20430495
[1] Chengjie Xue, Juan Wu, Kuang Wang, Yunqiang Yi, Zhanqiang Fang, Wen Cheng, Jianzhang Fang. Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil remediation[J]. Front. Environ. Sci. Eng., 2021, 15(5): 101-.
[2] Junlian Qiao, Yang Liu, Hongyi Yang, Xiaohong Guan, Yuankui Sun. Remediation of arsenic contaminated soil by sulfidated zero-valent iron[J]. Front. Environ. Sci. Eng., 2021, 15(5): 83-.
[3] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[4] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[5] Min Li, Shuai Liang, Yang Wu, Meiyue Yang, Xia Huang. Cross-stacked super-aligned carbon nanotube/activated carbon composite electrodes for efficient water purification via capacitive deionization enhanced ultrafiltration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 107-.
[6] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[7] Xiaoyan Guo, Chunyu Li, Chenghao Li, Tingting Wei, Lin Tong, Huaiqi Shao, Qixing Zhou, Lan Wang, Yuan Liao. G-CNTs/PVDF mixed matrix membranes with improved antifouling properties and filtration performance[J]. Front. Environ. Sci. Eng., 2019, 13(6): 81-.
[8] Xuemin Hao, Guanlong Wang, Shuo Chen, Hongtao Yu, Xie Quan. Enhanced activation of peroxymonosulfate by CNT-TiO2 under UV-light assistance for efficient degradation of organic pollutants[J]. Front. Environ. Sci. Eng., 2019, 13(5): 77-.
[9] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
[10] Gang Yi, Xinfei Fan, Xie Quan, Shuo Chen, Hongtao Yu. Comparison of CNT-PVA membrane and commercial polymeric membranes in treatment of emulsified oily wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(2): 23-.
[11] Yongsheng Zhao, Lin Lin, Mei Hong. Nitrobenzene contamination of groundwater in a petrochemical industry site[J]. Front. Environ. Sci. Eng., 2019, 13(2): 29-.
[12] Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite[J]. Front. Environ. Sci. Eng., 2018, 12(1): 4-.
[13] Christian GEORGE, Anne BEELDENS, Fotios BARMPAS, Jean-François DOUSSIN, Giuseppe MANGANELLI, Hartmut HERRMANN, Jörg KLEFFMANN, Abdelwahid MELLOUKI. Impact of photocatalytic remediation of pollutants on urban air quality[J]. Front. Environ. Sci. Eng., 2016, 10(5): 2-.
[14] Guiying RAO, Kristen S. BRASTAD, Qianyi ZHANG, Rebecca ROBINSON, Zhen HE, Ying LI. Enhanced disinfection of Escherichia coli and bacteriophage MS2 in water using a copper and silver loaded titanium dioxide nanowire membrane[J]. Front. Environ. Sci. Eng., 2016, 10(4): 11-.
[15] Xiaolong CHU,Guoqiang SHAN,Chun CHANG,Yu FU,Longfei YUE,Lingyan ZHU. Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation[J]. Front. Environ. Sci. Eng., 2016, 10(2): 211-218.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed