Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (6) : 1025-1035    https://doi.org/10.1007/s11783-014-0655-z
RESEARCH ARTICLE
An enhanced environmental multimedia modeling system based on fuzzy-set approach: II. Model validation and application
Rongrong ZHANG1,Chesheng ZHAN2,*(),Xiaomeng SONG3,4,*(),Baolin LIU5
1. Department of Building and Transportation Engineering, Beijing Urban Construction School, Beijing 100026, China
2. Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
3. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
4. Research Center for Climate Change, Ministry of Water Resources, Nanjing 210029, China
5. School of Marine Sciences, China University of Geosciences, Beijing 100083, China
 Download: PDF(567 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Part I of this study develops an enhanced environmental multimedia modeling system (EMMS) based on fuzzy-set approach. Once the model development is complete, the composite module and the entire modeling system need to be tested and validated to ensure that the model can simulate natural phenomena with reasonable and reliable accuracy. The developed EMMS is first tested in a complete case study. And then verification results are conducted to compare with extensively researched literature data. In the third step, the data from an experimental landfill site is used for a pilot-scale validation. The comparisons between EMMS outputs and the literature data indicate that the EMMS can perform accurate modeling simulation. The modules of EMMS could support the entire environmental multimedia modeling system. Further field-scale validation is finished. The results are satisfactory. Most of the modeling yields closely match the monitoring data collected from sites. In addition, with the aid of fuzzy-set approach, EMMS can be a reliable and powerful tool to address the complex environmental multimedia pollution problems and provide an extensive support for decision makers in managing the contaminated environmental systems.

Keywords environmental multimedia modelling system      fuzzy-set approach      application      model validation      uncertainty analysis     
Corresponding Author(s): Chesheng ZHAN,Xiaomeng SONG   
Online First Date: 18 February 2014    Issue Date: 23 November 2015
 Cite this article:   
Rongrong ZHANG,Chesheng ZHAN,Xiaomeng SONG, et al. An enhanced environmental multimedia modeling system based on fuzzy-set approach: II. Model validation and application[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1025-1035.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0655-z
https://academic.hep.com.cn/fese/EN/Y2015/V9/I6/1025
Fig.1  Testing of landfill module: (a) EMMS results for the subsurface concentration profile for benzene, (b) EMMS results for the subsurface concentration profile for VC, (c) EMMS results for the normalized atmospheric emission rate of benzene as function of time, (d) EMMS results for TCE mass fluxes at water table over time
parametersSymbol/(units)value
gaseous diffusion coefficient in airDga /(m2·d−1)0.785
organic carbon partition coefficientKoc /(m3·kg−1)0.124
Henry’s law constant, dimensionlessKH0.41
half-lifeτ/d4.7 × 108
organic carbon fractionfoc0.0075
liquid velocityvL /(m·d−1)0.001
liquid diffusion coefficient in waterDlw (m2·d−1)9.35 × 10−6
volumetric water content at field capacityθ0.3
bulk densityρb /(kg·m−3)1590
landfill depthL /m1
gaseous velocityvG /(m·d−1)0.0
evaluated depthzwt /m1.5
Tab.1  Input parameters for the computation of leachate flux from landfill [17,18]
Fig.2  Results of validation for unsaturated zone and saturated zone module. (a): concentration profile, (b): contour in unsaturated zone, (c) and (d): concentration profile and contour in groundwater at t = 365 d
Fig.3  Comparison of the emission flux of benzene between the predicted and observed results
time /monthslow bound of flux /(mg·(m2?d)−1)mean flux /(mg·(m2?d)−1)high bound of flux /(mg·(m2?d)−1)experiment results /(mg·(m2?d)−1)possibility degree
1239.66692.461.250.18
1412.721.229.729.340.96
175.49.112.715.7
193.35.67.84.50.48
251.11.92.63.3
291.01.72.31.890.32
310.71.21.71.00.40
320.60.91.31.10.50
330.50.91.21.030.43
340.40.71.00.60.33
Tab.2  Results of uncertainty analysis for benzene
Fig.4  Site plan of Trail Road Sanitary Landfill
indexyearrange of concentration /(mg·m−3)simulated concentration /(mg·m−3)simulated concentration /(mg·m−3)possibility degreemonitoring well
ethyl-benzene1999(16.2, 42.8)29.531.10.88M32
2000(15.9, 41.8)28.830.50.87
2001(15.4, 40.7)28.11.8
2002(15, 39.4)27.215.60.05
toluene1999(58.3, 153.7)106920.71
2000(56.9, 149.9)103.41080.90
2001(55.2, 145.4)100.321.6
2002(53.2, 140.3)96.854.50.03
benzene1999(3.4, 8.8)6.16.30.93M90
2000(3.3, 8.7)6.06.20.93
2001(3.2, 8.5)5.89.8
2002(3.1, 8.3)5.73.50.15
Tab.3  Comparison of simulated and observed concentration and uncertainty analysis
1 Coulibaly  L, Labib  M E, Hazen  R. A GIS-based multimedia watershed model: development and application. Chemosphere, 2004, 55(7): 1067–1080
https://doi.org/10.1016/j.chemosphere.2004.01.014 pmid: 15051375
2 Yuan  J. Development of an extended environmental multimedia modelling system (EEMMS). Dissertation for the Doctoral Degree. Montreal: Concordia University, 2009
3 Zhang  R R, Zhan  C S, He  Z P, Song  X M. Review of environmental multimedia models. Environmental Forensics, 2012, 13(3): 216–224
https://doi.org/10.1080/15275922.2012.702328
4 McKone  T E, Enoch  K G. CalTOX, a Multimedia Toal Exposure Model Spreadsheet User’s Guide Version 4.0. Berkeley: Lawrence Berkeley National Laboratory, 2002
5 McDonald  J P, Gelston  G M. Commentary on fate and exposure models: Description of the multimedia environmental pollutant assessment system (MEPAS, Version 3.2), with application to a hypothetical soil contamination scenario. Journal of Soil Contaminant, 1998, 7(3): 283–300
https://doi.org/10.1080/10588339891334339
6 Chen  Y C, Ma  H W. Model comparison for risk assessment: a case study of contaminated groundwater. Chemosphere, 2006, 63(5): 751–761
https://doi.org/10.1016/j.chemosphere.2005.08.011 pmid: 16213568
7 USEPA (U.S. Environmental Protection Agency). Methodology for Estimating Multimedia Exposures to Soil Contamination (MMSOIL). Washington, D C: Office of Health and Environmental Assessment, Exposure Assessment Group, 1988
8 Cohen  Y, Cooter  E. Multimedia environmental distribution of Toxics (Mend-Tox) I: Hybrid compartment-spatial modelling framework. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2002, 6(2): 70–86
https://doi.org/10.1061/(ASCE)1090-025X(2002)6:2(70)
9 Cohen  Y, Cooter  E. Multimedia environmental distribution of Toxics (Mend-Tox) II: Software implementation and case studies. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2002, 6(2): 87–101
https://doi.org/10.1061/(ASCE)1090-025X(2002)6:2(87)
10 Chen  Z, Yuan  J. An extended environmental multimedia modeling system (EEMMS) for landfill case studies. Environmental Forensics, 2009, 10(4): 336–346
https://doi.org/10.1080/15275920903347396
11 Yuan  J, Elektorowicz  M, Chen  Z. Improved environmental multimedia modeling and its sensitivity analysis. Water Science & Technology, 2011, 63(10): 2155–2163
https://doi.org/10.2166/wst.2011.343 pmid: 21977634
12 Zhan  C S, Zhang  R R, Song  X M. An enhanced environmental multimedia modelling system based on fuzzy-set approach: I. Theoretical framework and model test. Frontiers of Environmental Science & Engineering, 2014, doi: 10.1007/s11783-013-0609-x
13 Dubois  D, Prade  H. Fuzzy Sets and Systems. New York: Academic Press, 1988
14 Zimmermann  H J. Fuzzy Set Theory and its Applications. London: Kluwer Academic Publishers, 1992
15 Beer  M. Uncertain structural design based on nonlinear fuzzy analysis. ZAMM-Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 2004, 84(10–11): 740–753
https://doi.org/10.1002/zamm.200410154
16 Lin  J S, Hildemann  L M. A nonsteady-state analytical model to predict gaseous emissions of volatile organic compounds from landfills. Journal of Hazardous Materials, 1995, 40(3): 271–295
https://doi.org/10.1016/0304-3894(94)00088-X
17 Labieniec  P A, Dzombak  D A, Siegrist  R L. SoilRisk: risk assessment model for organic contaminants in soil. Journal of Environmental Engineering, 1996, 122(5): 388–398
https://doi.org/10.1061/(ASCE)0733-9372(1996)122:5(388)
18 Labieniec  P A, Dzombak  D A, Siegrist  R L. Risk variability due to uniform soil remediation goals. Journal of Environmental Engineering, 1996, 122(7): 612–621
https://doi.org/10.1061/(ASCE)0733-9372(1996)122:7(612)
19 Jury  W A, Spencer  W F, Farmer  W J. Behavior assessment model for trace organics in soil: I. model description. Journal of Environmental Quality, 1983, 12(4): 558–564
https://doi.org/10.2134/jeq1983.00472425001200040025x
20 Jury  W A, Russo  D, Strelie  G, El Abd  H. Evaluation of volatilization by organic chemicals residing below the soil surface. Water Resources Research, 1990, 26(1): 13–20
https://doi.org/10.1029/WR026i001p00013
21 Labieniec  P A. The risk implications of approaches for setting soil remediation goals at hazardous waste contaminated site. Dissertation for the Doctoral Degree. Pittsburgh: Carnegie Mellon University, 1994
22 Carnahan  C L, Remer  J S. Nonequilibrium and Equilibrium sorption with a linear sorption isotherm during mass transport through an infinite porous medium: some analytical solution. Journal of Hydrology (Amsterdam), 1984, 73(3–4): 227–258
https://doi.org/10.1016/0022-1694(84)90002-7
23 Domenico  P A. An analytical model for multidimentional transport of a decaying contaminant species. Journal of Hydrology (Amsterdam), 1987, 91(1–2): 49–58
https://doi.org/10.1016/0022-1694(87)90127-2
24 Rickabaugh  J F. Evaluation of trace VOC emissions from sanitary landfills. Dissertation for the Doctoral Degree. Cincinnati: University of Cincinnati, 1990
25 Dillon  M M, Lee  G. Trail Road and Nepean Landfill Sites Final Report for the 2002 Monitoring and Operation Program. Ottawa, Environment and Transportation Department Solid Waste Division, 2002
26 USEPA. Three Multimedia Models Used at Hazardous and Radioactive Waste Sites. Washington, D C: U.S. Environmental Protection Agency, 1996
27 Zhang  R R. Development of a fuzzy-set enhanced environmental multimedia modelling system. Dissertation for the Master Degree. Quebec: Concordia University, 2006
[1] Jiping Jiang, Feng Han, Yi Zheng, Nannan Wang, Yixing Yuan. Inverse uncertainty characteristics of pollution source identification for river chemical spill incidents by stochastic analysis[J]. Front. Environ. Sci. Eng., 2018, 12(5): 6-.
[2] Devin L. Maurer, Jacek A. Koziel, Kelsey Bruning. Field scale measurement of greenhouse gas emissions from land applied swine manure[J]. Front. Environ. Sci. Eng., 2017, 11(3): 1-.
[3] Chesheng ZHAN,Rongrong ZHANG,Xiaomeng SONG,Baolin LIU. An enhanced environmental multimedia modeling system based on fuzzy-set approach: I. Theoretical framework and model development[J]. Front. Environ. Sci. Eng., 2015, 9(3): 494-505.
[4] Kang XIAO, Ying XU, Shuai LIANG, Ting LEI, Jianyu SUN, Xianghua WEN, Hongxun ZHANG, Chunsheng CHEN, Xia HUANG. Engineering application of membrane bioreactor for wastewater treatment in China: Current state and future prospect[J]. Front. Environ. Sci. Eng., 2014, 8(6): 805-819.
[5] Dawen GAO, Yu TAO. Current molecular biologic techniques for characterizing environmental microbial community[J]. Front Envir Sci Eng, 2012, 6(1): 82-97.
[6] Xia HUANG, Kang XIAO, Yuexiao SHEN. Recent advances in membrane bioreactor technology for wastewater treatment in China[J]. Front.Environ.Sci.Eng., 2010, 4(3): 245-271.
[7] ZHOU Jiquan, LIU Yi, CHEN Jining, YU Fanxian. Uncertainty analysis on aquatic environmental impacts of urban land use change[J]. Front.Environ.Sci.Eng., 2008, 2(4): 494-504.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed