Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (3) : 545-553    https://doi.org/10.1007/s11783-014-0657-x
RESEARCH ARTICLE
Preparation and application of a phosphorous free and non-nitrogen scale inhibitor in industrial cooling water systems
Guangqing LIU1,2,Mengwei XUE1,2,Jingyi HUANG1,Huchuan WANG1,Yuming ZHOU1,3,*(),Qingzhao YAO1,3,Lei LING1,Ke CAO1,Yahui LIU1,Yunyun BU1,Yiyi CHEN1,Wendao WU4,Wei SUN4
1. School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
2. School of Biochemical and Environmental Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
3. Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, China
4. Jianghai Environmental Protection CO., Ltd., Changzhou 213116, China
 Download: PDF(3330 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel environmentally friendly type of calcium carbonate, zinc (II) and iron (III) scale inhibitor Acrylic acid- allylpolyethoxy carboxylate copolymer (AA-APEL) was synthesized. The anti-scale property of the AA-APEL toward CaCO3, zinc (II) and iron (III) in the artificial cooling water was studied through static scale inhibition tests. The observation shows that both calcium carbonate, zinc (II) and iron (III) inhibition increase with increasing the dosage of AA-APEL. The effect on formation of CaCO3 was investigated with combination of scanning electronic microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) analysis and fourier transform infrared spectrometer, respectively. The results showed that the AA-APEL copolymer not only influenced calcium carbonate crystal morphology and crystal size but also the crystallinity. The crystallization of CaCO3 in the absence of inhibitor was rhombohedral calcite crystal, whereas a mixture of calcite with vaterite crystals was found in the presence of the AA-APEL copolymer. Inhibition mechanism is proposed that the interactions between calcium or iron ions and polyethylene glycol (PEG) are the fundamental impetus to restrain the formation of the scale in cooling water systems.

Keywords phosphorous free      calcium carbonate      stabilize zinc (II)      disperse iron (III)      cooling water     
Corresponding Author(s): Yuming ZHOU   
Online First Date: 21 February 2014    Issue Date: 30 April 2015
 Cite this article:   
Guangqing LIU,Mengwei XUE,Jingyi HUANG, et al. Preparation and application of a phosphorous free and non-nitrogen scale inhibitor in industrial cooling water systems[J]. Front. Environ. Sci. Eng., 2015, 9(3): 545-553.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0657-x
https://academic.hep.com.cn/fese/EN/Y2015/V9/I3/545
Fig.1  Scheme 1 Synthesis of APEL
Fig.2  Scheme 2 Synthesis of AA-APEL
Fig.3  FT-IR spectra of APEG, APEL and AA-APEL
Fig.4  Inhibition on CaCO3 , zinc (II) and iron (III) as a function of AA-APEL dosage
Fig.5  Inhibition at a level of 8 mg·L-1 AA-APEL as a function of solution Ca2+ concentration (a), H C O 3 - concentration (b), time (c), and Fe2+ concentration (d)
dosages of scale inhibitors/(mg·L-1) calcium carbonate inhibition/%
AA-APEL PAA PMA T-225 MA-AA AA-APMS
0246810121416 015.965.178.598.398.497.798.798.6 016.831.744.252.161.274.978.379.7 014.320.833.750.658.972.670.572.1 021.337.553.962.878.783.582.984.3 020.735.849.364.979.585.285.784.9 015.649.771.393.994.393.792.993.1
Tab.1  Calcium carbonate inhibition of the scale inhibitors
dosages of scale inhibitors/(mg·L-1) zinc (II) stabilization/%
AA-APEL PAA PMA T-225 MA-AA AA-APMS
0246810121416 022.368.792.595.395.194.795.896.1 019.135.947.761.371.272.574.373.2 016.827.138.957.268.970.671.570.3 020.747.563.972.882.781.583.382.5 021.745.469.382.683.584.783.884.6 025.662.287.390.191.389.490.691.1
Tab.2  zinc (II) stabilization of the scale inhibitors
dosages of scale inhibitors/(mg·L-1) transmittance of solution/%
AA-APEL PAA PMA T-225 MA-AA AA-APMS
0246810121416 10099.898.213.913.714.013.513.613.3 10099.735.835.334.934.535.234.133.7 10010099.799.398.998.595.193.994.8 10099.699.183.973.731.030.829.228.3 10099.591.865.341.939.639.240.339.4 10099.998.720.319.919.318.717.918.6
Tab.3  iron(III) dispersion of the scale inhibitors
Fig.6  (a) XRD pattern of the CaCO3 crystals: (1) without the AA-APEL copolymer and (2) with the AA-APEL copolymer (b) FT-IR spectra of CaCO3 precipitates: (1) in the absence of the AA-APEL copolymer and (2) in the presence of the AA-APEL copolymer
Fig.7  SEM images of calcium carbonate crystals (a) in the absence of AA-APEL copolymer; (b) in the presence of AA-APEL copolymer
Fig.8  TEM micrograph and diffraction pattern of CaCO3 precipitates: (a) TEM micrograph in the absence of AA-APEL copolymer; (b) diffraction pattern in the absence of AA-APEL copolymer; (c) TEM micrograph in the presence of AA-APEL copolymer; (d) diffraction pattern in the presence of AA-APEL copolymer
1 Xyla A G, Mikroyannidis J, Koutsoukos P G. The inhibition of calcium carbonate precipitation in aqueous media by organophosphorus compounds. Journal of Colloid and Interface Science, 1992, 153(2): 537–551
https://doi.org/10.1016/0021-9797(92)90344-L
2 Saleah A O, Basta A H. Evaluation of some organic-based biopolymers as green inhibitors for calcium sulfate scales. Environmentalist, 2008, 28(4): 421–428
https://doi.org/10.1007/s10669-008-9163-7
3 Amor M B, Zgolli D, Tlili M M, Manzola A S. Influence of water hardness, substrate nature and temperature on heterogeneous calcium carbonate nucleation. Desalination, 2004, 166(1): 79–84
https://doi.org/10.1016/j.desal.2004.06.061
4 Kjellin P. X-ray diffraction and scanning electron microscopy studies of calcium carbonate electrodeposited on a steel surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 212(1): 19–26
https://doi.org/10.1016/S0927-7757(02)00296-0
5 Kumar T, Vishwanatham S S, Kundu S A. Laboratory study on pteroyl-L-glutamic acid as a scale prevention inhibitor of calcium carbonate in aqueous solution of synthetic produced water. Journal of Petroleum Science and Technology, 2010, 71(1–2): 1–7
6 Zhou X H, Sun Y H, Wang Y Z. Inhibition and dispersion of polyepoxysuccinate as a scale inhibitor. Journal of Environmental Sciences-China, 2011, 23(Suppl.): 159–161
https://doi.org/10.1016/S1001-0742(11)61102-9
7 Liu Z Y, Sun Y H, Zhou X H, Wu T, Tian Y, Wang Y. Synthesis and scale inhibitor performance of polyaspartic acid. Journal of Environmental Sciences-China, 2011, 23(Suppl.): 153–155
https://doi.org/10.1016/S1001-0742(11)61100-5
8 Suharso, Buhani, Bahri S, Endaryanto T. Gambier extracts as an inhibitor of calcium carbonate (CaCO3) scale formation. Desalination, 2011, 265(1–3): 102–106
https://doi.org/10.1016/j.desal.2010.07.038
9 Al Nasser W N, Al-Salhi F H, Hounslow M J, Salman A D. Inline monitoring the effect of chemical inhibitor on the calcium carbonate precipitation and agglomeration. Chemical Engineering Research & Design, 2011, 89(5): 500–511
https://doi.org/10.1016/j.cherd.2011.02.004
10 Zhang B R, Zhang L, Li F T, Hu W, Hannam P M. Testing the formation of Ca–phosphonate precipitates and evaluating the anionic polymers as Ca–phosphonate precipitates and CaCO3 scale inhibitor in simulated cooling water. Corrosion Science, 2010, 52(12): 3883–3890
https://doi.org/10.1016/j.corsci.2010.07.037
11 Reddy M M, Nancollas G H. Calcite crystal growth inhibition by phosphonates. Desalination, 1973, 12(1): 61–73
https://doi.org/10.1016/S0011-9164(00)80175-7
12 Amjad Z. Masler W F. Stabilization of metal ions with terpolymers containing styrene sulfonic acid. USPTO, U.S. Patent 4, 885,097, US 07/235,268 12,5, 1989
13 Du K, Zhou Y M, Wang Y Y, Wang Y. Fluorescent-tagged no phosphate and nitrogen free calcium phosphate scale inhibitor for cooling water systems. Journal of Applied Polymer Science, 2009, 113(3): 1966–1974
https://doi.org/10.1002/app.30213
14 Du K, Zhou Y, Da L, Wang Y. Preparation and properties of polyether scale inhibitor containing fluorescent groups. International Journal of Polymeric Materials, 2008, 57(8): 785–796
https://doi.org/10.1080/00914030801962988
15 Sharma V K, Johnsson M, Sallis J D, Nancollas G H. Influence of citrate and phosphocitrate on the crystallitelization of octacalcium phosphate. Langmuir, 1992, 8(2): 676–679
https://doi.org/10.1021/la00038a062
16 Pecheva E, Pramatarova L, Altankov G. Hydroxyapatite grown on a native extracellular matrix: initialinteractions with human fibroblasts. Langmuir, 2007, 23(18): 9386–9392
https://doi.org/10.1021/la700435c
17 Amjad Z. Constant composition study of crystallite growth of calcium fluoride. Influence of poly (carboxylic acids), polyphosphates, phosphonates, and phytate. Langmuir, 1991, 7(3): 600–603
https://doi.org/10.1021/la00051a032
18 Ueyama N, Hosoi T, Yamada Y, Doi M, Okamura T, Nakamura A. Calcium complexes of carboxylate-containing polyamide with sterically disposed NH…O hydrogen bond: detection of the polyamide in calcium carbonate by 13C cross-polarization/magic angle spinning spectra. Macromolecules, 1998, 31(21): 7119–7126
https://doi.org/10.1021/ma9716847
19 Kuriyavar S I, Vetrivel R, Hegde S G, Ramaswamy A V, Chakrabarty D, Mahapatra S. Insights into the formation of hydroxyl ions in calcium carbonate: temperature dependent FTIR and molecular modelling studies. Journal of Materials Chemistry, 2000, 10(8): 1835–1840
https://doi.org/10.1039/b001837f
20 Chakraborty D, Agarwal V K, Bhatia S K, Bellare J. Steady-state transitions and polymorph transformations in continuous precipitation of calcium carbonate. Industrial & Engineering Chemistry Research, 1994, 33(9): 2187–2197
https://doi.org/10.1021/ie00033a024
21 Kim D S, Lee C K. Surface modification of precipitated calcium carbonate using aqueous fluosilicic acid. Applied Surface Science, 2002, 202(1–2): 15–23
https://doi.org/10.1016/S0169-4332(02)00534-2
22 Ajikumar P K, Low B J M, Valiyaveettil S. Role of soluble polymers on the preparation of functional thin films of calcium carbonate. Surface and Coatings Technology, 2005, 198(1–3): 227–230
https://doi.org/10.1016/j.surfcoat.2004.10.028
23 Li H, Hsieh M K, Chien S H, Monnell J D, Dzombak D A, Vidic R D. Control of mineral scale deposition in cooling systems using secondary-treated municipal wastewater. Water Research, 2011, 45(2): 748–760
https://doi.org/10.1016/j.watres.2010.08.052
24 Weiss P, Obadia L, Magne D, Bourges X, Rau C, Weitkamp T, Khairoun J, Bouler J M, Chappard D, Gauthier O, Daculsi G. Synchrotron X-ray microtomography (on a micron scale) provides three-dimensional imaging representation of bone ingrowth in calcium phosphate biomaterials. Biomaterials, 2003, 24(25): 4591–4601
https://doi.org/10.1016/S0142-9612(03)00335-1
25 Harada A, Kataoka K. Novel polyion complex micelles entrapping enzyme molecules in the core: preparation of narrowlydistributed micelles from lysozyme and poly(ethylene glycol)-poly-(aspartic acid) block copolymer in aqueous medium. Macromolecules, 1998, 31(2): 288–294
https://doi.org/10.1021/ma971277v
26 Bouyer F, Gerardin C, Fajula F, Putaux J L, Chopin T. Role of double-hydrophilic block copolymers in the synthesis of lanthanum-based nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 217(1–3): 179–184
https://doi.org/10.1016/S0927-7757(02)00574-5
[1] Shucheng YANG, Yanling HE, Charles CHOU, Pengxiang ZHANG, Dongqi WANG, Yonghong LIU, . Effect of wastewater composition on the calcium carbonate precipitation in upflow anaerobic sludge blanket reactors[J]. Front.Environ.Sci.Eng., 2010, 4(2): 142-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed