Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (3) : 534-544    https://doi.org/10.1007/s11783-014-0660-2
RESEARCH ARTICLE
Simulation of long-term nutrient removal in a full-scale closed-loop bioreactor for sewage treatment: an example of Bayesian inference
Zheng LI1,Rong QI1,Wei AN1,Takashi MINO2,Tadashi SHOJI3,Willy VERSTRAETE4,Jian GU5,Shengtao LI5,Shiwei XU5,Min YANG1,*()
1. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100086, China
2. Socio-Cultural Environmental Studies, the University of Tokyo, Kashiwa City 277-8563, Japan
3. Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Chiba 270-1194, Japan
4. Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Gent 9000, Belgium
5. Beijing Drainage Group Co. Ltd, Beijing 100044, China
 Download: PDF(288 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, the performance of nitrogen and phosphorus removal in a full-scale closed-loop bioreactor (oxidation ditch) system was simulated using the ASM2d model. Routine data describing the process for two years were compiled for calibration and validation. To overcome the identifiability problem, the classic Bayesian inference approach was utilized for parameter estimation. The calibrated model could describe the long-term trend of nutrient removal and short-term variations of the process performance, showing that the Bayesian method was a reliable and useful tool for the parameter estimation of the activated sludge models. The anoxic phosphate uptake by polyphosphate accumulating organisms (PAO) contributed 71.2% of the total Poly-P storage, which reveals the dominance of denitrifying phosphorus removal process under the oxygen limiting conditions. It was found that 58.7% of the anoxic Poly-P storage and denitrification by PAO in the reactor was achieved in the aerated compartment, implying that the PAO’s anoxic activity was significantly stimulated by the low dissolved oxygen (DO) level in this compartment due to the oxygen gradient caused by brush aerator.

Keywords activated sludge model      Bayesian inference      biological nutrient removal      closed-loop bioreactor      oxidation ditch      denitrifying polyphosphate accumulating organisms     
Corresponding Author(s): Min YANG   
Online First Date: 21 February 2014    Issue Date: 30 April 2015
 Cite this article:   
Zheng LI,Rong QI,Wei AN, et al. Simulation of long-term nutrient removal in a full-scale closed-loop bioreactor for sewage treatment: an example of Bayesian inference[J]. Front. Environ. Sci. Eng., 2015, 9(3): 534-544.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0660-2
https://academic.hep.com.cn/fese/EN/Y2015/V9/I3/534
Fig.1  Model structure of the closed-loop oxidation ditch process
name symbol percentage/% method/equation
total COD TCOD 100 measurement
inert soluble COD SI 2.0 SI = 0.9 CODeff,sol
readily biodegradable soluble COD SS 29.2 SS = CODinf,sol-SI
volatile fatty acids, VFA, in COD SA 16.9 measurement
fermentable, readily biodegradable COD SF 12.3 SF = SS-SA
slowly biodegradable particulate COD XS 57.1 XS = BCOD-SS
inert particulate COD XI 11.7 XI = TCOD-SI-SS-XS
Tab.1  COD fractions relative to the total COD in the effluent from grit chamber
parameter unit rel. std. prior mean prior SD max. posterior
KA,PAO g COD·m-3 0.5 4 2 1.9
KMAX g P·g COD-1 0.2 0.34 0.068 0.54
K O 2 , A U T g O2·m-3 0.2 0.5 0.1 0.14
K O 2 , H E T g O2·m-3 0.5 0.2 0.1 0.36
ηfe 0.2 0.4 0.08 0.55
η N O 3 , H E T , 0.2 0.8 0.16 0.90
η N O 3 , P A O , 0.2 0.6 0.12 0.31
qPHA* d-1 0.5 3 1.5 3.5
qPP* d-1 0.5 1.5 0.75 1.8
μAUT* d-1 0.2 1 0.2 1.7
μPAO* d-1 0.5 1 0.5 1.3
YPO4 g P·g COD-1 0.05 0.4 0.02 0.44
Tab.2  Parameters for the dynamic calibration with Bayesian inference
Fig.2  Measurements (circles) and model predictions (solid lines) of ammonium, nitrate and phosphate concentrations in the effluent. The correlation coefficients between prediction and measured data in the right panel are: ammonium: R2 = 0.862, nitrate: R2 = 0.884, phosphate: R2 = 0.718
Fig.3  Measurements (light bars) and prediction (dark bars) of phosphate concentrations in the system
WWTP process type VFA uptake rate/(mg·g-1 VSS·h-1) P-release rate/(mg·g-1 VSS·h-1) P-release/VFA uptake ratio/(g P·g-1 COD) aerobic P-uptake rate/(mg·g-1 VSS·h-1) anoxic P-uptake rate/(mg·g-1 VSS·h-1) anoxic/aerobic P-uptake rate
this study OD 21.1 7.8 0.37 0.99 1.94 2.1
Hardenberg a) BCFS 21.9 17.4 0.38 19.2 5.9 0.31
Deventer a) BCFS 19.2 9.6 0.45 9.0 2.1 0.23
Holten b) modified UCT 47 16 0.50 13 6 0.46
Genemuiden c) modified UCT 7–31 5–9 0.40 4–6 1.2–1.6 0.2–0.4
Katwoude a) Phoredox 13.5 11.1 0.33 8.0 1.9 0.23
Hoek vanHolland a) Phoredox 21.3 20.9 0.38 9.1 4.4 0.48
Venlo a) Phoredox 11.2 10.6 0.38 6.2 0.6 0.9
HaarlemWaarderpolder SidestreamP-stripping 9.0 a), 23 d) 10.4 a), 6 d) 0.40 a), 0.31 d) 9.8 a), 2.2 d) 3.3 a), 1.7 d) 0.34 a), 0.8 d)
Tab.3  Comparison of simulated PAO activities with the measurements from other full-scale systems
Fig.4  PAO activities in the anaerobic, anoxic and aerated compartments calculated with the simulated process rates. The black and dark gray bars represent the anaerobic and anoxic compartments, and the light gray and white bars represent the anoxic and aerobic activities in the aerated compartment of the reactor respectively
Fig.5  Nitrogen removal by denitrification in the anoxic and aerated compartments calculated with the simulated process rates. The dark bar represents the denitrification by heterotrophic organisms, and the light bar represents the denitrification by the process of anoxic Poly-P storage of PAO
1 Henze M, Gujer W, Mino T, van Loosdrecht M C M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3: Scientific and Technical Report No. 9. London: IWA Publishing, 2000
2 Rieger L, Koch G, Kühni M, Gujer W, Siegrist H. The EAWAG Bio-P module for activated sludge model No. 3. Water Research, 2001, 35(16): 3887–3903
https://doi.org/10.1016/S0043-1354(01)00110-5 pmid: 12230171
3 van Veldhuizen H M, van Loosdrecht M C M, Heijnen J J. Modelling biological phosphorus and nitrogen removal in a full scale activated sludge process. Water Research, 1999, 33(16): 3459–3468
https://doi.org/10.1016/S0043-1354(99)00064-0
4 Brdjanovic D, van Loosdrecht M C M, Versteeg P, Hooijmans C M, Alaerts G J, Heijnen J J. Modelling COD, N and P removal in a full-scale WWTP Haarlem Waarderpolder. Water Research, 2000, 34(3): 846–858
https://doi.org/10.1016/S0043-1354(99)00219-5
5 Meijer S C F. Theoretical and practical aspects of modeling activated sludge processes. Dissertation for the Doctoral Degree. Delft, Netherlands: Delft University of Technology, 2004
6 Barker P S, Dold P L. General model for biological nutrient removal activated-sludge systems: model presentation. Water Environment Research, 1997, 69(5): 969–984
https://doi.org/10.2175/106143097X125669
7 Hu Z R, Wentzel M C, Ekama G A. A general kinetic model for biological nutrient removal activated sludge systems: model development. Biotechnology and Bioengineering, 2007, 98(6): 1242–1258
https://doi.org/10.1002/bit.21508 pmid: 17514760
8 Carrette R, Bixio D, Thoeye C, Ockier P. Full-scale application of the IAWQ ASM No. 2d model. Water Science and Technology, 2001, 44(2–3): 17–24
pmid: 11547980
9 Ingildsen P, Rosen C, Gernaey K V, Nielsen M K, Guildal T, Jacobsen B N. Modelling and control strategy testing of biological and chemical phosphorus removal at Aved?re WWTP. Water Science and Technology, 2006, 53(4–5): 105–113
https://doi.org/10.2166/wst.2006.115 pmid: 16722060
10 Hao X D, van Loosdrecht M C M, Meijer S C F, Qian Y. Model-based evaluation of two BNR processes—UCT and A2N. Water Research, 2001, 35(12): 2851–2860
https://doi.org/10.1016/S0043-1354(00)00596-0 pmid: 11471685
11 Meijer S C F, van Loosdrecht M C M, Heijnen J J. Metabolic modelling of full-scale biological nitrogen and phosphorus removing wwtp’s. Water Research, 2001, 35(11): 2711–2723
https://doi.org/10.1016/S0043-1354(00)00567-4 pmid: 11456171
12 Brun R, Kühni M, Siegrist H, Gujer W, Reichert P. Practical identifiability of ASM2d parameters-systematic selection and tuning of parameter subsets. Water Research, 2002, 36(16): 4113–4127
https://doi.org/10.1016/S0043-1354(02)00104-5 pmid: 12405420
13 Makinia J, Rosenwinkel K H, Spering V. Long-term simulation of the activated sludge process at the Hanover-Gümmerwald pilot WWTP. Water Research, 2005, 39(8): 1489–1502
https://doi.org/10.1016/j.watres.2005.01.023 pmid: 15878020
14 Wichern M, Obenaus F, Wulf P, Rosenwinkel K H. Modelling of full-scale wastewater treatment plants with different treatment processes using the Activated Sludge Model no. 3. Water Science and Technology, 2001, 44(1): 49–56
pmid: 11496677
15 Gernaey K V, van Loosdrecht M C M, Henze M, Lind M, J?rgensen S B. Activated sludge wastewater treatment plant modelling and simulation: state of the art. Environmental Modelling & Software, 2004, 19(9): 763–783
https://doi.org/10.1016/j.envsoft.2003.03.005
16 Weijers S R, Vanrolleghem P A. A procedure for selecting best identifiable parameters in calibration activated sludge model No. 1 to full-scale plant data. Water Science and Technology, 1997, 36(5): 69–79
https://doi.org/10.1016/S0273-1223(97)00463-0
17 Ruano M V, Ribes J, de Pauw D J W, Sin G. Parameter subset selection for the dynamic calibration of activated sludge models (ASMs): experience versus systems analysis. Water Science and Technology, 2007, 56(8): 107–115
https://doi.org/10.2166/wst.2007.605 pmid: 17978438
18 Sin G, de Pauw D J W, Weijers S, Vanrolleghem P A. An efficient approach to automate the manual trial and error calibration of activated sludge models. Biotechnology and Bioengineering, 2008, 100(3): 516–528
https://doi.org/10.1002/bit.21769 pmid: 18098316
19 Machado V C, Tapia G, Gabriel D, Lafuente J, Baeza J A. Systematic identifiability study based on the Fisher Information Matrix for reducing the number of parameters calibration of an activated sludge model. Environmental Modelling & Software, 2009, 24(11): 1274–1284
https://doi.org/10.1016/j.envsoft.2009.05.001
20 Hulsbeek J J W, Kruit J, Roeleveld P J, van Loosdrech M C. A practical protocol for dynamic modelling of activated sludge systems. Water Science and Technology, 2002, 45(6): 127–136
pmid: 11989865
21 Melcer H, Dold P L, Jones R M, Bye C M, Takacs I, Stensel H D, Wilson A W, Sun P, Bury S. Methods for Wastewater Characterization in Activated Sludge Modelling. Alexandria: Water Environment Research Foundation (WERF), 2003
22 Vanrolleghem P A, Insel G, Petersen B, Sin G, de Pauw D, Nopens I, Weijers S, Gernaey K. A comprehensive model calibration procedure for activated sludge models. In: Proceedings of the Water Environment Federation, WEFTEC 2003: Session 31 through Session 40. Alexandria: Water Environment Federation, 2003, 210–237
23 Langergraber G, Rieger L, Winkler S, Alex J, Wiese J, Owerdieck C, Ahnert M, Simon J, Maurer M. A guideline for simulation studies of wastewater treatment plants. Water Science and Technology, 2004, 50(7): 131–138
pmid: 15553468
24 García-Usach F, Ferrer J, Bouzas A, Seco A. Calibration and simulation of ASM2d at different temperatures in a phosphorus removal pilot plant. Water Science and Technology, 2006, 53(12): 199–206
https://doi.org/10.2166/wst.2006.422 pmid: 16889256
25 Zobrist J, Reichert P. Bayesian estimation of export coefficients from diffuse and point sources in Swiss watersheds. Journal of Hydrology (Amsterdam), 2006, 329(1–2): 207–223
https://doi.org/10.1016/j.jhydrol.2006.02.014
26 Yang J, Reichert P, Abbaspour K C, Yang H. Hydrological modelling of the Chaohe Basin in China: Statistical model formulation and Bayesian inference. Journal of Hydrology (Amsterdam), 2007, 340(3–4): 167–182
https://doi.org/10.1016/j.jhydrol.2007.04.006
27 Schuwirth N, Kühni M, Schweizer S, Uehlinger U, Reichert P. A mechanistic model of benthos community dynamics in the River Sihl, Switzerland. Freshwater Biology, 2008, 53(7): 1372–1392
https://doi.org/10.1111/j.1365-2427.2008.01970.x
28 Omlin M, Reichert P. A comparison of techniques for the estimation of model prediction uncertainty. Ecological Modelling, 1999, 115(1): 45–59
https://doi.org/10.1016/S0304-3800(98)00174-4
29 Lee J W, Hong Y S T, Suh C, Shin H S. Online nonlinear sequential Bayesian estimation of a biological wastewater treatment process. Bioprocess and Biosystems Engineering, 2012, 35(3): 359–369
https://doi.org/10.1007/s00449-011-0574-3 pmid: 21792564
30 Clescerl L S, Greenberg A E, Eaton A D, editors. Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington DC: American Public Health Association, American Water Works Association and Water Environment Federation, 1998
31 Roeleveld P J, van Loosdrecht M C M. Experience with guidelines for wastewater characterisation in The Netherlands. Water Science and Technology, 2002, 45(6): 77–87
pmid: 11989880
32 Meijer S C F, van der Spoel H, Susanti S, Heijne J J, van Loosdrecht M C M. Error diagnostics and data reconciliation for activated sludge modelling using mass balances. Water Science and Technology, 2002, 45(6): 145–156
pmid: 11989868
33 Alex J, Tschepetzki R, Jumar U, Obenaus F, Rosenwinkel K H. Analysis and design of suitable model structures for activated sludge tanks with circulating flow. Water Science and Technology, 1999, 39(4): 55–60
https://doi.org/10.1016/S0273-1223(99)00053-0
34 Derco J, Králik M, Hutnan M, Bodík I, Cernák R. Modelling of the Carrousel plant. Water Science and Technology, 1994, 30(6): 345–354
35 Reichert P. AQUASIM 2.0-User Manual, Technical Report. Dübendorf: Swiss Federal Institute for Environmental Science and Technology (EAWAG), 1998
36 Reichert P. Aquasim—a tool for simulation and data analysis of aquatic systems. Water Science and Technology, 1994, 30(2): 21–30
37 Reichert P. A standard interface between simulation programs and systems analysis software. Water Science and Technology, 2006, 53(1): 267–275
https://doi.org/10.2166/wst.2006.029 pmid: 16532757
38 Reichert P. UNCSIM—A Computer Program for Statistical Inference and Sensitivity, Identifiability, and Uncertainty Analysis: User’s Manual Version 2.0, Technical Report. Dübendorf: Swiss Federal Institute of Aquatic Science and Technology (EAWAG), and Zürich: Swiss Federal Institute of Technology (ETH), 2007
39 Meijer S C F, van Loosdrecht M C M, Heijnen J J. Modelling the start-up of a full-scale biological phosphorous and nitrogen removing WWTP. Water Research, 2002, 36(19): 4667–4682
https://doi.org/10.1016/S0043-1354(02)00192-6 pmid: 12448508
40 López-Vázquez C M, Hooijmans C M, Brdjanovic D, Gijzen H J, van Loosdrecht M C M. Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands. Water Research, 2008, 42(10–11): 2349–2360
https://doi.org/10.1016/j.watres.2008.01.001 pmid: 18272198
41 Kuba T, van Loosdrecht M C M, Heijnen J J. Biological dephosphatation by activated sludge under denitrifying conditions: pH influence and occurrence of denitrifying dephosphatation in a full-scale wastewater treatment plant. Water Science and Technology, 1997, 36(12): 75–82
https://doi.org/10.1016/S0273-1223(97)00713-0
42 Kuba T, van Loosdrecht M C M, Brandse F A, Heijnen J J. Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants. Water Research, 1997, 31(4): 777–786
https://doi.org/10.1016/S0043-1354(96)00370-3
43 Kerrn-Jespersen J P, Henze M. Biological phosphorus uptake under anoxic and aerobic conditions. Water Research, 1993, 27(4): 617–624
https://doi.org/10.1016/0043-1354(93)90171-D
44 Kuba T, Smolders G, van Loosdrecht M C M, Heijnen J J. Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor. Water Science and Technology, 1993, 27(5–6): 241–252
45 Ahn J, Daidou T, Tsuneda S, Hirata A. Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay. Water Research, 2002, 36(2): 403–412
https://doi.org/10.1016/S0043-1354(01)00222-6 pmid: 11827346
46 Shoji T, Satoh H, Mino T. Quantitative estimation of the role of denitrifying phosphate accumulating organisms in nutrient removal. Water Science and Technology, 2003, 47(11): 23–29
pmid: 12906267
47 Kong Y H, Nielsen J L, Nielsen P H. Microautoradiographic study of Rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants. Applied and Environmental Microbiology, 2004, 70(9): 5383–5390
https://doi.org/10.1128/AEM.70.9.5383-5390.2004 pmid: 15345424
[1] Supplementary Material Download
[1] Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type[J]. Front. Environ. Sci. Eng., 2018, 12(5): 8-.
[2] Juan DU,Yu FAN,Xin QIAN. Occurrence and behavior of pharmaceuticals in sewage treatment plants in eastern China[J]. Front. Environ. Sci. Eng., 2015, 9(4): 725-730.
[3] Shuai MA,Siyu ZENG,Xin DONG,Jining CHEN,Gustaf OLSSON. Modification of the activated sludge model for chemical dosage[J]. Front. Environ. Sci. Eng., 2015, 9(4): 694-701.
[4] Lei SHEN,Yuntao GUAN,Guangxue WU,Xinmin ZHAN. N2O emission from a sequencing batch reactor for biological N and P removal from wastewater[J]. Front.Environ.Sci.Eng., 2014, 8(5): 776-783.
[5] Shijian GE, Yongzhen PENG, Congcong LU, Shuying WANG. Practical consideration for design and optimization of the step feed process[J]. Front Envir Sci Eng, 2013, 7(1): 135-142.
[6] Changyong WU, Xiaoling LI, Zhiqiang CHEN, Yongzhen PENG, . Effect of short-term atrazine addition on the performance of an anaerobic/anoxic/oxic process[J]. Front.Environ.Sci.Eng., 2010, 4(2): 150-156.
[7] Hongtao PANG, Hanchang SHI, Huiming SHI, . Flow characteristic and wastewater treatment performance of a pilot-scale airlift oxidation ditch[J]. Front.Environ.Sci.Eng., 2009, 3(4): 470-476.
[8] Fangyue LI, Joachim BEHRENDT, Knut WICHMANN, Ralf OTTERPOHL. Evaluation of factors influencing soluble microbial product in submerged MBR through hybrid ASM model[J]. Front Envir Sci Eng Chin, 2009, 3(2): 226-235.
[9] Hongxun HOU, Shuying WANG, Yongzhen PENG, Zhiguo YUAN, Fangfang YIN, Wang GAN. Anoxic phosphorus removal in a pilot scale anaerobic-anoxic oxidation ditch process[J]. Front Envir Sci Eng Chin, 2009, 3(1): 106-111.
[10] YUAN Linjiang, HAN Wei, WANG Lei, YANG Yongzhe, WANG Zhiying. Simultaneous denitrifying phosphorus accumulation in a sequencing batch reactor[J]. Front.Environ.Sci.Eng., 2007, 1(1): 23-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed